首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric micelles with a polystyrene core, poly(acrylic acid)/poly(4-vinyl pyridine) (PAA/P4VP) complex shell and poly(ethylene glycol) & poly(N-isopropylacrylamide) (PEG & PNIPAM) mixed corona were synthesized and used as the supporter for the gold nanoparticles (GNs). It was concluded from the result of 1H NMR characterization that hydrophilic channels formed around PEG chains when PNIPAM collapsed above its lower critical solution temperature. The density of the channels in the corona can be tuned by changing the weight ratios of PEG chains to PNIPAM chains. The GNs were set in the PAA/P4VP complex layer and the catalytic activity of the GNs can be modulated by the channels. The catalytic activity increased with increasing the density of the channels in the corona. Meanwhile, the whole Au/micelle nanoparticles were stabilized by the extended PEG chains.  相似文献   

2.
The poly(9,9-dioctyl fluorine-alt-2-amino-4,6-pyrimidine) (oligomer) is used as an effective dispersant for single walled carbon nanotubes (SWCNTs) and generates stable SWCNTs hybrid after elimination of the excess polymer. The covered polymers immobilized Pt nanoparticles onto the surface of single-walled carbon nanotubes (SWCNTs) by coordination between Pt and polymer and the amount of the loaded Pt on the hybrid was calculated to be 38.5 wt %. The average diameter of the Pt nanoparticles on the SWCNTs were about ~4–5 nm and have a moderate electrochemically active surface area of 40.5 m2/g. These studies strongly imply the possible application of novel pyrimidine/carbon materials as catalyst supports in the electrodes of fuel cells.  相似文献   

3.
《Electrophoresis》2018,39(8):1086-1095
The chiral organic‐inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open‐tubular capillary electrochromatography (OT‐CEC). Hence, a novel protocol for the preparation of an OT column coated with nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate) (nano‐ABDMPC)‐silica hybrid sol through in situ layer‐by‐layer self‐assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano‐ABDMPC‐silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1‐phenyl‐2‐propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run‐to‐run, day‐to‐day and column‐to‐column. These results demonstrated the promising applicability of nano‐ABDMPC‐silica hybrid sol coated OT column in CEC enantioseparations.  相似文献   

4.
In this report, we demonstrated a novel efficient post-modification route for preparation of smart hybrid gold nanoparticles with poly(4-vinylpyridine) (P4VP) based on RAFT and click chemistry. A new azide terminated ligand was first synthesized to modify gold nanoparticles by ligand exchange reaction, and then click reaction was used to graft alkyne terminated P4VP which was prepared by RAFT onto the surface of gold nanoparticles. The functionalized hybrid gold nanoparticles were characterized by TEM, FTIR, and XPS etc. The results indicated that the P4VP was successfully grafted onto the surface of gold nanoparticles by click reaction. The surface grafting density was calculated to be about 6 chains/nm2. In addition, the hybrid gold nanoparticles showed a pH responsive phenomenon as the pH value changed around 5.  相似文献   

5.
A novel glassy carbon electrode (GCE) modified with a composite film of poly (4-vinylpyridine) (P4VP) and multiwalled carbon nanotubes (P4VP/MWCNT GCE) was used for the voltammetric determination of paracetamol (PCT). This novel electrode displayed a combined effect of P4VP and MWCNT on the electro-oxidation of PCT in a solution of phosphate buffer at pH 7. Hence, conducting properties of P4VP along with the remarkable physical properties of MWCNTs might have combined effects in enhancing the kinetics of PCT oxidation. The P4VP/MWCNT GCE has also demonstrated excellent electrochemical activity toward PCT oxidation compared to that with bare GCE and MWCNT GCE. The anodic peak currents of PCT on the P4VP/MWCNT GCE were about 300 fold higher than that of the non-modified electrodes. By applying differential pulse voltammetry technique under optimized experimental conditions, a good linear ratio of oxidation peak currents and concentrations of PCT over the range of 0.02–450 μM with a limit of detection of 1.69 nM were achieved. This novel electrode was stable for more than 60 days and reproducible responses were obtained at 99% of the initial current of PCT without any influence of physiologically common interferences such as ascorbic acid and uric acid. The application of this electrode to determine PCT in tablets and urine samples was proposed.  相似文献   

6.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

7.
An ordered nanostructure can be created from the hybrid materials of self-assembly poly(3-hexyl thiophene-b-2-vinyl pyridine) and nicotinic acid-modified titanium dioxide nanoparticles (P3HT-b-P2VP/TiO(2)). TEM and XRD analyses reveal that the TiO(2) nanoparticles (NPs) are preferentially confined in the P2VP domain of P3HT-b-P2VP whereas TiO(2) NPs interact with either pure P3HT or a blend of P3HT and P2VP to produce microsized phase segregation. The morphologies of lamellar and cylindrical structures are disturbed when the loading of TiO(2) NPs is 40 wt % or higher. Cylindrical P3HT-b-P2VP/TiO(2) exhibits a small blue shift in absorption and photoluminescence spectra with increasing TiO(2) loading as compared to P3HT/TiO(2). The NPs cause a slightly misaligned P3HT domain in the copolymer. Furthermore, the PL quenching of P3HT-b-P2VP/TiO(2) becomes very large as a result of efficient charge separation in the ordered nanodomain at 16 nm. Solar cells fabricated from self-assembly P3HT-b-P2VP/TiO(2) hybrid materials exhibit a >30 fold improvement in power conversion efficiency as compared to the corresponding 0.3P3HT-0.7P2VP/TiO(2) polymer blend hybrid. This study paves the way for the further development of high-efficiency polymer-inorganic nanoparticle hybrid solar cells using a self-assembled block copolymer.  相似文献   

8.
We present a theoretical study of the electronic and mechanical properties of graphyne-based nanotubes (GNTs). These semiconducting nanotubes result from the elongation of one-third of the covalent interconnections of graphite-based nanotubes by the introduction of yne groups. The effect of charge injection on the dimensions of GNTs was investigated using tight-binding calculations. Low amounts of electron injection are predicted to cause qualitatively different responses for armchair and zigzag graphyne nanotubes. Although the behavior is qualitatively similar to the usual carbon nanotubes, the charge-induced strains are predicted to be smaller for the GNTs than for ordinary single walled carbon nanotubes.  相似文献   

9.
《Analytical letters》2012,45(12):1604-1616
In this paper, a novel amperometric immunosensor for the determination of carbofuran based on gold nanoparticles (GNPs), magnetic Fe3O4 nanoparticles-functionalized multiwalled carbon nanotubes-chitosan (Fe3O4-FCNTs-CS), and bovine serum albumin (BSA) composite film was proposed. First, GNPs were immobilized onto the glassy carbon electrode (GCE) surface, and then the magnetic Fe3O4 nanoparticles mixed with chitosan-functionalized multiwall carbon nanotubes (CS-FCNTs) homogeneous composite (CS-FCNTs-Fe3O4) was immobilized onto the GNPs layer by electrostatic interactions between amino groups of CS and GNPs. Because chitosan (CS) contains many amino groups, it can absorb more antibodies. FCNTs have high surface area, high electrical conductivity, and it can enhance the electron transfer rate; Magnetite (Fe3O4) nanoparticles can provide a favorable microenvironment for biomolecules immobilization due to their good biocompatibility, strong superparamagnetic property, and low toxicity; and GNPs possess high surface-to-volume reaction, stability, and high conductivity. Gold Nanoparticles/Fe3O4-FCNTs-CS composite film was constructed onto the GCE surface, which had significant synergistic effects toward immunoreaction signal amplification. The stepwise assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Under the optimal conditions, the current response was proportional to the concentration of carbofuran ranging from 1.0 ng/mL to 100.0 ng/mL and from 100.0 ng/mL to 200 µg/mL with the detection limit 0.032 ng/mL. The proposed immunosensor exhibited good accuracy, high sensitivity, and stability, and it can be used for detection of carbofuran pesticide.  相似文献   

10.
A novel nanohybrid material, constructed by gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWNTs), was designed for immobilization and biosensing of myoglobin (Mb). Morphology of the nanohybrid film was characterized by SEM. UV‐vis spectroscopy demonstrated that Mb on the composite film could retain its native structure. Direct electrochemistry of Mb immobilized on the GNPs/MWNTs film was investigated. The immobilized Mb showed a couple of quasireversible and well‐defined cyclic voltammetry peaks with a formal potential of about ?0.35 V (vs. Ag/AgCl) in pH 6.0 phosphate buffer solution (PBS) solution. Furthermore, the modified electrode also displayed good sensitivity, wide linear range and long‐term stability to the detection of hydrogen peroxide. The experiment results demonstrated that the hybrid matrix provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

11.
采用固相-液相两步混合法制备了由碳纳米管(CNTs)和石墨烯纳米片(GNPs)组成的CNTs-GNPs复合载体。以乙二醇还原法将Pd纳米粒子沉积于复合碳载体上,制得Pd/CNTs-GNPs催化剂。以透射电子显微镜、X射线衍射及X射线光电子能谱表征催化剂的形貌、组成和结构;以电化学方法考察催化剂的甲醇电氧化性能。结果表明,Pd/CNTs-GNPs(1/4)(GNPs质量分数为1/4)催化剂具有较大的电化学表面积和较高的甲醇电氧化活性,其甲醇氧化峰电流密度可达Pd/CNTs催化剂的1.97倍。催化剂的高活性得益于CNTs-GNPs载体的一维/二维复合结构使Pd纳米粒子具有良好的分散性能。计时电流实验表明,与单一载体负载Pd催化剂相比,复合载体负载Pd催化剂具有较强的抗中毒能力。  相似文献   

12.
首先利用硅烷偶联剂(KH550)对纳米二氧化钛表面进行预处理,得到氨基改性的二氧化钛,然后与带有高活性端基的丙交酯-乙交酯共聚物(PLGA)反应,制备纳米药物缓释载体PLGA/TiO2有机-无机杂化材料.通过核磁(1H-NMR)、傅里叶变换红外光谱仪(FTIR)、热重分析(TGA)、扫描电子显微镜(SEM)、透射电子显...  相似文献   

13.
Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ‐potential measurements are used to study the drug loading/release and for monitoring the nanotube layer‐by‐layer (LbL) coating with polyelectrolytes for further release control. Resveratrol‐loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self‐toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF‐7) as function of the resveratrol‐loaded nanotubes concentration and incubation time indicate that drug‐loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis.

  相似文献   


14.
Flexible dielectric chloroprene rubber (CR) nanocomposites reinforced by one-dimensional carbon nanotube (CNT)/two dimensional reduced graphene oxide hybrids have been prepared using two-roll mill mixing technique. Non-covalent π-π interaction between multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) nanosheets and the secondary interaction between fillers and chloroprene rubber matrix are responsible for generating the effective load transfer between RGO/MWCNTs and CR. The prepared RGO-MWCNT hybrid nanocomposites with high dielectric constant (≈650), low dielectric loss (≈0.42) and high energy storage efficiency (78.6%) values are practically good enough to use as a low cost polymeric dielectric layer in transistors. Furthermore, the prepared nanocomposites showed excellent electromagnetic effectiveness; a maximum shielding efficiency of 11.87 dB @ 3.5 GHz was achieved at 4 phr of MWCNT loading. This excellent electromechanical performance can be ascribed to the synergistic effect of RGO-MWCNT hybrid suggesting that this novel hybrid nanocomposite serves as an attractive candidate in modern electronics and electric power systems.  相似文献   

15.
Here we report a facile method for the preparation of a PEO113‐b‐P4VP93 brush on gold surface with a grafting density as high as 1.32 chains/nm2; the P4VP blocks were physically adsorbed on gold surface forming an inner layer while the PEO blocks stretched towards the solution forming PEO brush. PEO113‐b‐P4VP93 micelles with P4VP core and PEO shell formed in methanol/water mixed solvents were used as the precursor. By adsorbing PEO113‐b‐P4VP93 micelles from pure water, in which the density of the micelles is the largest, maximum amount of the micelles was adsorbed onto gold surface, and the adsorbed micelles existed as individual domains on the surface. To prepare the polymer brush with a density as high as possible, we annealed the adsorbed micelles by methanol/water mixed solvent at the volume fraction of methanol (VF) of 20%, which was the proper proportion at which the core‐forming P4VP chains began to be flexible but the integrity of the micelles was remained. At this volume fraction, almost all the adsorbed micelles originally existing as individual domains were transformed into a dense polymer brush.  相似文献   

16.
The carbon content of mesostructured organic‐inorganic hybrid material of a cylindrical block copolymer template of poly(2‐vinylpyridine)‐block‐poly(allyl methacrylate) (P2VP‐b‐PAMA) and ammonium paramolybdate (APM) could be reduced by thermal depolymerization. By calcination in vacuo at 320 °C the PAMA core can be completely removed while the remaining P2VP brush preserves the mesostructure. The P2VP‐APM composite can then be carburized in‐situ to MoOxCy in a second pyrolysis step without any additional carbon source but P2VP. The molybdenum oxycarbide nanotubes obtained, form hierarchically porous non‐woven structures, which were tested as catalyst in the decomposition of NH3. They proved to be catalytically active at temperatures above 450 °C. The activation energy was estimated from an Arrhenius Plot to be 127 kJ · mol–1.  相似文献   

17.
用聚丙烯酸叔丁酯-b-聚乙二醇(PtBA45-b-PEG114)和聚丙烯酸叔丁酯-b-聚4-乙烯基吡啶(PtBA60-b-P4VP80)制备了复合胶束. 该胶束在pH=2.5的酸性水溶液中形成以PtBA为核, PEG和P4VP为壳的稳定球型结构. 在pH=12时, 壳层的P4VP链段变为疏水, 塌缩在PtBA的核上形成内壳, PEG链段继续保持溶解状态, 与成核的PtBA连接并穿过塌陷的P4VP内壳, 形成胶束的冠, 由于PEG处于溶解状态, 其分子链间有比较大的空隙, 可以控制一些小分子通过, 在胶束的表面形成通道. 该通道类似于生物膜的蛋白通道, 可以控制PtBA核与外界进行能量或物质交换的速度. 以布洛芬为模型分子, 负载在胶束内进行药物控制释放研究的结果表明, 胶束表面的通道可以起到明显控制布洛芬释放速度的作用, 并且药物的释放速度与通道在胶束表面的比例成正比.  相似文献   

18.
We report here on the formation of hybrid compound block copolymer micelles encapsulating gold nanoparticles, utilizing a direct and general preparation method. The giant hybrid compound micelles are structured with micelles of PS‐b‐P2VP with gold nanoparticles in their P2VP core and PI‐b‐PS chains as the outer part of the compound micelles. The gold nanoparticles were produced using gold ion‐loaded PS‐b‐P2VP micelles as a nanoreactor, in a PS selective solvent (toluene), by the subsequent reduction of gold ions. The synthesis of the gold nanoparticles was monitored by UV‐vis spectroscopy. The gold containing micelles were then encapsulated in larger micelles of PI‐b‐PS copolymer, by successive utilization of toluene and heptane with the intermediate evaporation of toluene. The nanoassembly of the compound materials comprised a PI corona and a PS compound core, with P2VP/Au0 domains, and was characterized using UV‐vis spectroscopy, dynamic light scattering and transmission electron microscopy.

  相似文献   


19.
Poly(N,N′‐methylenebisacrylamide–4‐vinylpyridine) (P(MBA‐4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5–15 nm were dispersed throughout the core of P(MBA‐4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time. The pH sensitivity of P(MBA‐4VP) nanowires offers the possibility of Ag NP release from the nanowires under acidic conditions. The photocatalytic performance of the P(MBA‐4VP) nanowires loaded with Ag NPs was evaluated for the degradation of methylene blue (MB) under UV light irradiation. Their rate of degradation is dependent on the content and size of the Ag NPs, as well as the pH values of the MB solution. Moreover, the P(MBA‐4VP) nanowires loaded with Ag NPs exhibited high photostability, and the photocatalytic efficiency reduced by only 1.81 % after being used three times.  相似文献   

20.
A new nanocomposite was developed by combination of nickel hexacyanoferrate nanoparticles (NiNP) and nano silver coated multiwalled carbon nanotubes (nano Ag-MWNTs). The NiNP/nano Ag-MWNTs nanocomposite was charactered by scanning electron microscopy (SEM). The NiNP/nano Ag-MWNTs nanocomposite modified glassy carbon (GC) electrode was used to investigate the electrochemical reduction of hydrogen peroxide. The results showed that NiNP and nano Ag-MWNTs provided the synergistic effect toward this process. The obtained NiNP/nano Ag-MWNTs/GC electrode showed a wide linear response range of 1 × 10?6 to 1 × 10?4 and 5 × 10?4 to 0.01 M hydrogen peroxide with correlation coefficients of 0.998 and 0.997, fast response time (2 s), and good selectivity toward the electrocatalytic reduction of hydrogen peroxide. The detection limit (S/N = 3) of hydrogen peroxide was 5 × 10?7 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号