首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.  相似文献   

2.
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.  相似文献   

3.
In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space—time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained.  相似文献   

4.
Relaxation properties of different media (dielectrics, semiconductors, ferromagnetics, and so on) are normally expressed in terms of response function f(t) or of real and imaginary components of its Fourier transform dependent on the frequency . It had been recently recognized that most of real materials show deviation from classical Debye process. There exist a few empirical approximations of non-Debye response functions. One of them is the two-power approximation containing and , where and belong to the interval (0, 1). This formula gives the basis for introducing of fractional differential equation considered in this paper. A stochastic interpretation of this equation is offered; its solution is found and investigated. The results are in agreement with experimental data.  相似文献   

5.
More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.  相似文献   

6.
Numerical Solutions of a New Type of Fractional Coupled Nonlinear Equations   总被引:1,自引:0,他引:1  
In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian decomposition method to the new system. As a result, with the aid of Maple, the realistic and convergent rapidly series solutions are obtained with easily computable components. Two famous fractional coupled examples: KdV and mKdV equations, are used to illustrate the efficiency and accuracy of the proposed method.  相似文献   

7.
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.  相似文献   

8.
The aim of this article is to investigate the solutions of generalized fractional partial differential equations involving Hilfer time fractional derivative and the space fractional generalized Laplace operators, occurring in quantum mechanics. The solutions of these equations are obtained by employing the joint Laplace and Fourier transforms, in terms of the Fox's $H$-function. Several special cases as solutions of one dimensional non-homogeneous fractional equations occurring in the quantum mechanics are presented. The results given earlier by Saxena et al. [Fract. Calc. Appl. Anal., 13(2) (2010), pp. 177-190] and Purohit and Kalla [J. Phys. A Math. Theor., 44 (4) (2011), 045202] follow as special cases of our findings.  相似文献   

9.
In this paper, we use Mittag-Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.  相似文献   

10.
A Laplace decomposition algorithm is adopted to investigate numerical solutions of a class of nonlinear partial differential equations with nonlinear term of any order, utt + auxx + bu + cup + du^2p-1 = 0, which contains some important equations of mathematical physics. Three distinct initial conditions are constructed and generalized numerical solutions are thereby obtained, including numerical hyperbolic function solutions and doubly periodic ones. Illustrative figures and comparisons between the numerical and exact solutions with different values of p are used to test the efficiency of the proposed method, which shows good results are azhieved.  相似文献   

11.
This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-prey models by replacing the second-order derivatives in the spatial variables with fractional derivatives of order less than two. Moving finite element methods are proposed to solve the system of fractional diffusion equations and the convergence rates of the methods are proved. Numerical examples are carried out to confirm the theoretical findings. Some applications in anomalous diffusive Lotka-Volterra and Michaelis-Menten-Holling predator-prey models are studied.  相似文献   

12.
In this paper, we discuss the dependence of the solutions on the parameters (order, initial function, right-hand function) of fractional neutral delay differential equations (FNDDEs). The corresponding theoretical results are given respectively. Furthermore, we present some numerical results that support our theoretical analysis.  相似文献   

13.
The purpose of the paper is to present analytical and numerical solutions of a degenerate parabolic equation with time-fractional derivatives arising in the spatial diffusion of biological populations. The homotopy-perturbation method is employed for solving this class of equations, and the time-fractional derivatives are described in the sense of Caputo. Comparisons are made with those derived by Adomian's decomposition method, revealing that the homotopy perturbation method is more accurate and convenient than the Adomian's decomposition method. Furthermore, the results reveal that the approximate solution continuously depends on the time-fractional derivative and the proposed method incorporating the Caputo derivatives is a powerful and efficient technique for solving the fractional differential equations without requiring linearization or restrictive assumptions. The basis ideas presented in the paper can be further applied to solve other similar fractional partial differential equations.  相似文献   

14.
In this article,we establish new and more general traveling wave solutions of space-time fractional Klein–Gordon equation with quadratic nonlinearity and the space-time fractional breaking soliton equations using the modified simple equation method.The proposed method is so powerful and effective to solve nonlinear space-time fractional differential equations by with modified Riemann–Liouville derivative.  相似文献   

15.
In this paper, the (G'/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.  相似文献   

16.
In this paper, a consistent Riccati expansion method is developed to solve nonlinear fractional partial differential equations involving Jumarie's modified Riemann–Liouville derivative. The efficiency and power of this approach are demonstrated by applying it successfully to some important fractional differential equations, namely, the time fractional Burgers, fractional Sawada–Kotera, and fractional coupled mKdV equation. A variety of new exact solutions to these equations under study are constructed.  相似文献   

17.
In this paper, we investigate the dependence of the solutions on the parameters (order, initial function, right-hand function) of fractional delay differential equations (FDDEs) with the Caputo fractional derivative. Some results including an estimate of the solutions of FDDEs are given respectively. Theoretical results are verified by some numerical examples.  相似文献   

18.
Motivated by the widely used ansätz method and starting from the modified Riemann-Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.  相似文献   

19.
Yi Tian  Jing Pang 《声与振动》2022,56(1):65-76
This is the first paper on symmetry classification for ordinary differential equations (ODEs) based on Wu’s method. We carry out symmetry classification of two ODEs, named the generalizations of the Kummer-Schwarz equations which involving arbitrary function. First, Lie algorithm is used to give the determining equations of symmetry for the given equations, which involving arbitrary functions. Next, differential form Wu’s method is used to decompose determining equations into a union of a series of zero sets of differential characteristic sets, which are easy to be solved relatively. Each branch of the decomposition yields a class of symmetries and associated parameters. The algorithm makes the classification become direct and systematic. Yuri Dimitrov Bozhkov, and Pammela Ramos da Conceição have used the Lie algorithm to give the symmetry classifications of the equations talked in this paper in 2020. From this paper, we can find that the differential form Wu’s method for symmetry classification of ODEs with arbitrary function (parameter) is effective, and is an alternative method.  相似文献   

20.
In this paper we find the solution of linear as well as nonlinear fractional partial differential equations using discrete Adomian decomposition method. Here we develop the discrete Adomian decomposition method to find the solution of fractional discrete diffusion equation, nonlinear fractional discrete Schrodinger equation, fractional discrete Ablowitz-Ladik equation and nonlinear fractional discrete Burger's equation. The obtained solution is verified by comparison with exact solution when $\alpha=1$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号