首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the superconvergence property and the $L^{\infty}$-error estimates of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and co-state are approximated by the order one Raviart-Thomas mixed finite element space and the control variable is approximated by piecewise constant functions or piecewise linear functions. We derive some superconvergence results for the control variable and the state variables when the control is approximated by piecewise constant functions. Moreover, we derive $L^{\infty}$-error estimates for both the control variable and the state variables when the control is discretized by piecewise linear functions. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

2.
In this article, functional type a posteriori error estimates are presented for a certain class of optimal control problems with elliptic partial differential equation constraints. It is assumed that in the cost functional the state is measured in terms of the energy norm generated by the state equation. The functional a posteriori error estimates developed by Repin in the late 1990s are applied to estimate the cost function value from both sides without requiring the exact solution of the state equation. Moreover, a lower bound for the minimal cost functional value is derived. A meaningful error quantity coinciding with the gap between the cost functional values of an arbitrary admissible control and the optimal control is introduced. This error quantity can be estimated from both sides using the estimates for the cost functional value. The theoretical results are confirmed by numerical tests.  相似文献   

3.
4.
In this paper, a constrained distributed optimal control problem governed by a first-order elliptic system is considered. Least-squares mixed finite element methods, which are not subject to the Ladyzhenkaya-Babuska-Brezzi consistency condition, are used for solving the elliptic system with two unknown state variables. By adopting the Lagrange multiplier approach, continuous and discrete optimality systems including a primal state equation, an adjoint state equation, and a variational inequality for the optimal control are derived, respectively. Both the discrete state equation and discrete adjoint state equation yield a symmetric and positive definite linear algebraic system. Thus, the popular solvers such as preconditioned conjugate gradient (PCG) and algebraic multi-grid (AMG) can be used for rapid solution. Optimal a priori error estimates are obtained, respectively, for the control function in $L^2(Ω)$-norm, for the original state and adjoint state in $H^1(Ω)$-norm, and for the flux state and adjoint flux state in $H$(div; $Ω$)-norm. Finally, we use one numerical example to validate the theoretical findings.  相似文献   

5.
In this article, we shall give a brief review on the fully discrete mixed finite element method for general optimal control problems governed by parabolic equations. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. Furthermore, we derive a posteriori error estimates for the finite element approximation solutions of optimal control problems. Some numerical examples are given to demonstrate our theoretical results.  相似文献   

6.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

7.
8.
We study the numerical approximation of distributed nonlinear optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. Our main result are error estimates for optimal controls in the maximum norm. Characterization results are stated for optimal and discretized optimal control. Moreover, the uniform convergence of discretized controls to optimal controls is proven under natural assumptions.  相似文献   

9.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

10.
This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds.  相似文献   

11.
In this paper, we study the finite element methods for distributed optimal control problems governed by the biharmonic operator. Motivated from reducing the regularity of solution space, we use the decoupled mixed element method which was used to approximate the solution of biharmonic equation to solve the fourth order optimal control problems. Two finite element schemes, i.e., Lagrange conforming element combined with full control discretization and the nonconforming Crouzeix-Raviart element combined with variational control discretization, are used to discretize the decoupled optimal control system. The corresponding a priori error estimates are derived under appropriate norms which are then verified by extensive numerical experiments.  相似文献   

12.
We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The analysis of the approximate control problems is carried out. The uniform convergence of discretized controls to optimal controls is proven under natural assumptions by taking piecewise constant controls. Finally, error estimates are established and some numerical experiments, which confirm the theoretical results, are performed.The first two authors were supported by Ministerio de Ciencia y Tecnología (Spain). The second author was also supported by the DFG research center “Mathematics for key technologies” (FZT86) in Berlin.  相似文献   

13.
In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and costate are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

14.
On Mixed Error Estimates for Elliptic Obstacle Problems   总被引:1,自引:0,他引:1  
We establish in this paper sharp error estimates of residual type for finite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a new interpolator which enables us to eliminate inactive data from the error estimators. One application of our mixed error estimates is to construct a posteriori error indicators reliable and efficient up to higher order terms, and these indicators are useful in mesh-refinements and adaptive grid generations. In particular, by approximating the a priori part with some a posteriori quantities we can successfully track the free boundary for elliptic obstacle problems.  相似文献   

15.
In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.  相似文献   

16.
In this paper, we investigate the superconvergence property and the $L^∞$-error estimates of mixed finite element methods for a semilinear elliptic control problem. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive some superconvergence results for the control variable. Moreover, we derive $L^∞$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

17.
We study the optimal control problem for a class of elliptic problems that may possess multiple solutions. We obtain necessary conditions for optimal control by constructing a related parabolic problem and using known results for the parabolic problem.  相似文献   

18.
王金凤  刘洋  李宏 《数学季刊》2011,(1):131-137
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.  相似文献   

19.
In this article, we consider an application of the abstract error estimate for a class of optimal control systems described by a linear partial differential equation (as stated in Numer. Funct. Anal. Optim. 2009; 30:523–547). The control is applied at the boundary and we consider both, Neumann and Dirichlet optimal control problems. Finite element methods are proposed to approximate the optimal control considering an approximation of the variational inequality resulting from the optimality conditions; this approach is known as classical one. We obtain optimal order error estimates for the control variable and numerical examples, taken from the literature, are included to illustrate the results.  相似文献   

20.
半线性椭圆型问题Mortar有限元逼近的瀑布型多重网格法   总被引:1,自引:0,他引:1  
Mortar有限元法作为一个非协调的区域分解技术已得到许多研究者的关注(如文献[2]、[5]等)。本文对半线性椭圆型问题的Mortar有限元逼近提出了瀑布型多重网格法,并给出了此法的误差估计和计算复杂度估计定理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号