首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>In this paper,based on Hirota’s bilinear method,the Wronskian and Grammian techniques,as well as several properties of the determinant,a broad set of sufficient conditions consisting of systems of linear partial differential equations are presented.They guarantee that the Wronskian determinant and the Grammian determinant solve the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form.Then some special exact Wronskian and Grammian solutions are obtained by solving the differential conditions.At last,with the aid of Maple,some of these special exact solutions are shown graphically.  相似文献   

2.
Generally speaking, the BKP hierarchy which only has Pfaffian solutions. In this paper, based on the Grammian and Wronskian derivative formulae, generalized Wronskian and Grammian determinant solutions are obtained for the isospectral BKP equation (the second member on the BKP hierarchy) in the Hirota bilinear form. Especially, with the help of the properties of the computing of Young diagram, we have first applied Young diagram proved the proposition of this paper. Moreover, by considering the different combinations of the entries in Wronskian, we obtain various types of Wronskian solutions.  相似文献   

3.
In this paper, new extended Grammian determinant solutions to a (3 + 1)-dimensional KP equation are presented by using Hirora's bilinear method, and a broad set of suftlcient conditions of systems of linear partial differential equations is given. Moreover, some special solutions of the representative systems are obtained through a systematic analysis.  相似文献   

4.
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant.  相似文献   

5.
成建军  张鸿庆 《中国物理 B》2016,25(1):10506-010506
The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique,the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper,we give a universal method to construct a system of linear differential conditions.  相似文献   

6.
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.  相似文献   

7.
In this paper, two types of the (2+1)-dimensional breaking soliton equations are investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinear forms and Bäcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilinear equations. Via the Wronskian technique, it is proved that theBäcklund transformations obtained are the ones between the (N-1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonic properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.  相似文献   

8.
In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schrödinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Bäcklund transformation transforms between (N − 1)- and N-soliton solutions.  相似文献   

9.
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.  相似文献   

10.
Xiao-Hua Wang 《中国物理 B》2022,31(4):40301-040301
We propose a new scheme to study the exact solutions of a class of hyperbolic potential well. We first apply different forms of function transformation and variable substitution to transform the Schrödinger equation into a confluent Heun differential equation and then construct a Wronskian determinant by finding two linearly dependent solutions for the same eigenstate. And then in terms of the energy spectrum equation which is obtained from the Wronskian determinant, we are able to graphically decide the quantum number with respect to each eigenstate and the total number of bound states for a given potential well. Such a procedure allows us to calculate the eigenvalues for different quantum states via Maple and then substitute them into the wave function to obtain the expected analytical eigenfunction expressed by the confluent Heun function. The linearly dependent relation between two eigenfunctions is also studied.  相似文献   

11.
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilinear transformation from its Lax pairs and find solutions with the help of the obtained bilinear transformation.  相似文献   

12.
邓淑芳 《中国物理快报》2006,23(7):1662-1665
The bilinear form for a nonisospectral and variable-coefficient Kadomtsev-Petviashvili equation is obtained and some exact soliton solutions are derived by the Hirota method and Wronskian technique. We also derive the bilinear Backlund transformation from its Lax pairs and find solutions with the help of the obtained bilinear Bgcklund transformation.  相似文献   

13.
张晴帆  范恩贵 《中国物理》2007,16(6):1505-1509
This paper constructs more general exact solutions than $N$-soliton solution and Wronskian solution for variable-coefficient Kadomtsev--Petviashvili (KP) equation. By using the Hirota method and Pfaffian technique, it finds the Grammian determinant-type solution for the variable-coefficient KP equation (VCKP), the Wronski-type Pfaffian solution and the Gram-type Pfaffian solutions for the Pfaffianized VCKP equation.  相似文献   

14.
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.  相似文献   

15.
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.  相似文献   

16.
We concentrate on finding exact solutions for a generalized variable-coefficient Korteweg-de Vries equation of physically significance. The analytic N-soliton solution in Wronskian form for such a model is postulated and verified by direct substituting the solution into the bilinear form by virtue of the Wronskian technique. Additionally, the bilinear auto-Backlund transformation between the ( N - 1)- and N-soliton solutions is verified.  相似文献   

17.
By the symbolic computation and Hirota method, the bilinear form and an auto-Bäcklund transformation for a variable-coefficient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N-1)- and N-solitonic solutions satisfy the auto-Bäcklund transformation through the Wronskian technique.  相似文献   

18.
Solutions in the Grammian form for a variable-coefficient Kadomtsev-Petviashvili (KP) equation which has the Wronskian solutions are derived by means of Pfaffian derivative formulae.  相似文献   

19.
Wen-Xiu Ma 《Physics letters. A》2011,375(45):3931-3935
By combining two pieces of bi-directional Wronskian solutions, molecule solutions in Wronskian form are presented for the finite, semi-infinite and infinite bilinear 2D Toda molecule equations. In the cases of finite and semi-infinite lattices, separated-variable boundary conditions are imposed. The Jacobi identities for determinants are the key tool employed in the solution formulations.  相似文献   

20.
Starting with the solution classification for a linear differential equations, the complexiton solutions to nonisospectral Korteweg-de Vries equation are presented. The basic technique adopted is the Wronskian technique for Hirota's bilinear equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号