首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three thiophenevinyl substituted one-, two-, and three-branched truxene π-conjugated compounds TS1, TS2 and TS3 have been prepared using a Heck reaction. Their linear absorption, single- and two-photon excited fluorescence were examined. The three analogues emit blue fluorescence at 420 nm. The number of branches has no influence on the position of the absorption maxima of the charge transfer band and fluorescence emitting maxima. However, the molar extinction coefficients of charge transfer band increase almost linearly with the number of branches. The two-photon absorption cross-section of the octupolar three-branched compound TS3 is several times that of the two-branched compound TS2 and one-branched compound TS1.  相似文献   

2.
Two-photon absorption processes were investigated in electropolymerized Fe(III), Mn(III), and Co(II) 5,10,15,20-tetrakis-(4-hydroxytetraphenyl)porphyrin films. Degenerate four wave mixing (DFWM) spectroscopy with 100 fs pulses in the near-IR spectral region was used. Metalloporphyrins with strong charge transfer (CT) transitions in the linear absorption spectra also show enhanced two-photon absorption. (Metalloporphyrin two-photon absorption cross section, delta, increases >10 times over that for the metal free porphyrin.) This effect was attributed to a two-photon induced charge transfer between the metal ion's d orbitals and the pi-system of the porphyrin. Correlation of one- and two-photon absorption properties of transition metal porphyrins suggests a new and simple approach to improve organic materials for photonic applications.  相似文献   

3.
A conjugated and symmetric multi-branched compound, 1,2,4,5-tetrakis(4-pyridylvinyl)benzene (TKPVB), has been synthesized and the crystal structures of TKPVB and its intermediate, 1,2,4,5-tetrakis(dimethoxyphosphorylmethyl)benzene, were determined by diffraction method. TKPVB with four units of 4-vinylpyridine moieties attached to the central benzene core presents an A-π-A general framework, where A is a π-deficient pyridine ring. The single-photon and two-photon absorption and fluorescence properties in different solvents of varying polarity have been investigated. It is also found that the one- and two-photon-induced fluorescence spectra are quite similar, which indicate that the one- and two-photon allowed-excited states are the same.  相似文献   

4.
Protonation and subsequent intramolecular hydrogen bonding as methods to control chain structure and tune luminescence in heteroatomic conjugated polymers were reported experimentally [A. P. Monkman et al., J. Am. Chem. Soc. 124, 6049 (2002)]. In this paper, the structure and photophysical properties of the model teraryl compound of phenylene-pyridylene copolymer before and after protonation are theoretically studied with quantum chemistry methods. From the optimized ground states, intramolecular hydrogen bonding to the adjacent oxygen atom in the alkoxy substituent planarizes the backbone of the molecules, and the optimized detailed results of compound 9 before and after protonation, such as the dihedral angles between the central benzene and the two pyridyl rings, the bond lengths, and the bond angles, are consistent with the experimental results. From the results of the calculated excited states, the protonation and subsequent intramolecular hydrogen bonding result in the redshifts of the absorption, the increase of the ionization energy, the increase of the electron affinity, the decrease of the energy difference of the highest occupied molecular orbital and lowest unoccupied molecular orbital, the decrease of the binding gap, and the delocalization of the electron-hole coherence. The photophysical properties of compound 9 before and after protonation are further studied with a three-dimensional real-space analysis method of transition and charge difference densities (study transition dipole moment and charge transfer in the absorption and fluorescence processes) and two-dimensional real-space analysis method of transition density matrices (study the electron-hole coherence and the excitation delocalization). The calculated results show theoretically an insight understanding on the influence of the protonation and subsequent intramolecular hydrogen bonding to chain structure and photophysical properties.  相似文献   

5.
王钰  张立鹏  赵榆霞 《化学通报》2019,82(7):612-617
设计合成了一系列基于芳香酮的具有分子内扭曲态电荷转移(TICT)特性的化合物,通过线性光物理性质与双光子吸收性质的表征,研究了分子结构中不同共轭基团和不同取代基位置对化合物光谱性能的影响,同时通过溶剂效应研究了化合物的分子内电荷转移性质。结合理论计算结果表明分子的共轭骨架和取代基的位置都能显著影响分子内电荷转移特征。其中芴酮系列的化合物表现出了较强的双光子吸收与聚集诱导荧光增强效应,在生物荧光成像领域有着潜在的应用价值。  相似文献   

6.
李小静  李晶  王传奎 《物理化学学报》2009,25(11):2319-2324
在密度泛函理论水平上, 利用响应函数方法研究了实验新合成的两类以芴为π中心的分子(SK-G1和NT-G1)的双光子吸收特性. 计算结果表明, 这两类有机分子都具有较大的单光子和双光子光吸收强度. 在低能量范围内, NT-G1分子的最大单光子吸收峰相对于SK-G1分子来说发生了红移, 且其最大单光子吸收强度是SK-G1分子的两倍. SK-G1和NT-G1分子的最大双光子吸收均发生在第二激发态. NT-G1分子的最大双光子吸收截面约是SK-G1分子的五倍, 并且NT-G1分子存在一个较宽的双光子吸收带. NT-G1分子的较强光学性质与分子内较大的电荷转移过程有关. 采用Onsager模型计算了溶剂分子对溶质分子单光子吸收性质的影响, 理论计算结果和实验测量结果符合得较好.  相似文献   

7.
The nonlinear optical properties of four isomeric dipolar two-photon chromophores are compared. The chromophores consist of a carbazole electron donor coupled to a naphthalimide electron acceptor by a phenylacetylene bridge. By variation of the connectivity of the bridge at the phenyl groups, four compounds with 0, 1, and 2 meta linkages are synthesized. The linear and nonlinear optical properties of these compounds are measured. Despite similar linear absorption cross sections, the two-photon absorption cross section delta of the all-meta compound is almost a factor of 10 lower than the all-para compound. By taking the detailed molecular conformations into account in order to calculate accurate dipole moment changes, we find that the decrease in delta results largely from the decreased charge transfer ability with increasing number of meta linkages. We find that a two-state model can be used to predict semiquantitatively the observed trend in delta on the basis of the linear optical properties of the molecules. This work illustrates the dramatic effect the ground-state polarizability can have on the nonlinear optical response of organic compounds and also provides a way to quantify the ability of meta linkages to inhibit charge transfer in their ground-state configuration.  相似文献   

8.
In this paper, the equilibrium geometries, one-, two-, and three-photon absorption properties, and the transition nature of a series of Y-shaped molecules which possess an imidazole-thiazole core have been theoretically studied by using the parametrization model 3 and Zerner's intermediate neglect of differential overlap methods. Our calculated results have confirmed the experimental findings that the investigated molecules are all promising multiphoton absorption materials and both the two-photon absorption and the three-photon absorption cross sections are seriatim increscent along with the increase of the electron-donor strength. The nonlinear optical phenomenon originates from the intramolecular charge transfer within the pi-conjugated system. The calculated results indicate that the heterocyclic core increases the two- and three-photon absorption cross sections due to its pi-excessive nature. So it can provide more free electrons to enlarge the charge transfer within the molecule system. In addition, the design of Y shape and the sulfonyl-based electron-accepting group play a part in the enhancement of multiphoton absorption. It is notable that molecules with heterocyclic core will provide favorable condition for multiphoton absorption applications.  相似文献   

9.
1,3-Alternate calix[4]arene-based fluorescent chemosensors bearing two-photon absorbing chromophores have been synthesized, and their sensing behaviors toward metal ions were investigated via absorption band shifts as well as one- and two-photon fluorescence changes. Free ligands absorb the light at 461 nm and weakly emit their fluorescence at 600 nm when excited by UV-vis radiation at 461 nm, but no two-photon excited fluorescence is emitted by excitation at 780 nm. Addition of an Al(3+) or Pb(2+) ion to a solution of the ligand causes a blue-shifted absorption and enhanced fluorescence due to a declined resonance energy transfer (RET) upon excitation by one- and two-photon processes. Addition of a Pb(2+) ion to a solution of 1.K(+) results in a higher fluorescence intensity than the original 1.Pb(2+) complex regardless of one- or two-photon excitation, due to the allosteric effect induced by the complexation of K(+) with a crown loop.  相似文献   

10.
The analytic response theory at density functional theory level is applied to investigate one-photon and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measure-ments. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Further-more, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.  相似文献   

11.
In order to better understand the nature of intramolecular charge and energy transfer in multibranched molecules, we have synthesized and studied the photophysical properties of a monomer quadrupolar chromophore with donor-acceptor-donor (D-A-D) electronic push-pull structure, together with its V-shaped dimer and star-shaped trimers. The comparison of steady-state absorption spectra and fluorescence excitation anisotropy spectra of these chromophores show evidence of weak interaction (such as charge and energy transfer) among the branches. Moreover, similar fluorescence and solvation behavior of monomer and branched chromophores (dimer and trimer) implies that the interaction among the branches is not strong enough to make a significant distinction between these molecules, due to the weak interaction and intrinsic structural disorder in branched molecules. Furthermore, the interaction between the branches can be enhanced by inserting π bridge spacers (-C═C- or -C≡C-) between the core donor and the acceptor. This improvement leads to a remarkable enhancement of two-photon cross-sections, indicating that the interbranch interaction results in the amplification of transition dipole moments between ground states and excited states. The interpretations of the observed photophysical properties are further supported by theoretical investigation, which reveal that the changes of the transition dipole moments of the branched quadrupolar chromophores play a critical role in observed the two-photon absorption (2PA) cross-section for an intramolecular charge transfer (ICT) state interaction in the multibranched quadrupolar chromophores.  相似文献   

12.
This paper evaluates the 5-aryl-2-pyridyloxazole backbone to engineer donor-acceptor fluorescent pH probes after one- or two-photon absorption. Parent fluorophores, as well as derivatives that can be used to label biomolecules, can be easily obtained in good yields. These molecules exhibit a large one-photon absorption in the near-UV range, and a strong fluorescence emission that covers the whole visible domain. The 5-aryl-2-pyridyloxazole derivatives also possess significant cross sections for two-photon absorption. Upon pyridine protonation, large shifts were observed in the absorption spectra after one- and two-photon excitation, as well as in the emission spectra. This feature was used to measure the pK(a) of the investigated compounds that range between 2 and 8. In most of the investigated derivatives, the pK(a) increased upon light excitation and protonation exchanges took place during the lifetime of the excited state, as shown by phase-modulation fluorometry analysis. Several 5-aryl-2-pyridyloxazole derivatives are suggested as efficient probes to reliably measure the pH of aqueous solutions by means of ratiometric methods that are dependent on fluorescence emission.  相似文献   

13.
A series of new one, two, and three-branched two-photon absorption triazine derivatives with a π-bond and a σ-electron pair as a bridge have been synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effects, i.e., significant bathochromic shifting of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to intra-molecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by the two-photon excited fluorescence (TPEF) measurements in DMF. This result further proved that a σ-electron pair as a bridge is an efficient way to transfer charge as well as a π bridge, and that their 2PA cross-section values (δ) increase with increasing branch number.  相似文献   

14.
Two new multibranched thiophene-based triarylamine derivatives with 1,3,5-triazine core are synthesized and characterized. Their one-and two-photon absorption properties and aggregation-induced emission effect have been investigated. Both the STAPA-based compounds are AIE active. The two-photon absorption (2PA) cross sections measured by the open aperture Z-scan technique are determined to be 620 and 1610 GM for STAPA-a and STAPA-b in chloroform,respectively, which dramatically increase with the introduction of alkyl chains. The relationship between their structures and properties on one-and two-photon absorption and aggregation-induced emission is discussed, which allows us to examine the effect of introducing alkyl chains. In addition, solvent effects also show a significant influence on the 2PA cross section. The two compounds with excellent AIE and 2PA properties provide attractive alternatives for the biophotonic materials.  相似文献   

15.
Both the electronic and the vibronic contributions to one- and two-photon absorption of a D-pi-D charge-transfer molecule (4-dimethylamino-4'-methyl-trans stilbene) are studied by means of density functional response theory combined with a linear coupling model. Vibronic profiles of the first four excited states are fully explored. The dominating vibrational modes for both Franck-Condon and Herzberg-Teller contributions are identified. The Franck-Condon contribution dominates the spectra of first, second, and fourth excited states. The Herzberg-Teller contribution is on the other hand of comparable size for the third excited state, where its inclusion leads to a blueshift with respect to the vertical transition. A similar vibronic coupling behavior is found for both one- and two-photon absorptions.  相似文献   

16.
A combined experimental and theoretical study is conducted on a series of model compounds in order to assess the combined role of branching and charge symmetry on absorption, photoluminescence, and two-photon absorption (TPA) properties. The main issue of this study is to examine how branching of quadrupolar chomophores can lead to different consequences as compared to branching of dipolar chromophores. Hence, three structurally related pi-conjugated quadrupolar chromophores symmetrically substituted with donor end groups and one branched structure built from the assembly of three quadrupolar branches via a common donor moiety are used as model compounds. Their photophysical properties are studied using UV-vis spectroscopy, and the TPA spectra are determined through two-photon excited fluorescence experiments using femtosecond pulses in the 500-1000 nm range. Experimental studies are complemented by theoretical calculations. The applied theoretical methodology is based on time-dependent density functional theory, the Frenkel exciton model, and analysis in terms of the natural transition orbitals of relevant electronic states. Theory reveals that a symmetrical intramolecular charge transfer from the terminal donating groups to the middle of the molecule takes place in all quadrupolar chromophores upon photoexcitation. In contrast, branching via a central electron-donating triphenylamine moiety breaks the quadrupolar symmetry of the branches. Consequently, all Frank-Condon excited states have significant asymmetric multidimensional charge-transfer character upon excitation. Subsequent vibrational relaxation of the branched chromophore in the excited state leads to a localization of the excitation and fluorescence stemming from a single branch. As opposed to what was earlier observed when dipolar chromophores are branched via the same common electron-donating moiety, we find only a slight enhancement of the maximum TPA response of the branched compound with respect to an additive contribution of its quadrupolar branches. In contrast, substantial modifications of the spectral shape are observed. This is attributed to the subtle interplay of interbranch electronic coupling and asymmetry caused by branching.  相似文献   

17.
To investigate the effect of branching on linear and nonlinear optical properties, a specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly explored by a combined theoretical and experimental approach. Excited-state structure calculations based on quantum-chemical techniques (time-dependent density functional theory) as well as a Frenkel exciton model nicely complement experimental photoluminescence and one- and two-photon absorption findings and contribute to their interpretation. This allowed us to get a deep insight into the nature of fundamental excited-state dynamics and the nonlinear optical (NLO) response involved. Both experiment and theory reveal that a multidimensional intramolecular charge transfer takes place from the donating moiety to the periphery of the branched molecules upon excitation, while fluorescence stems from an excited state localized on one of the dipolar branches. Branching is also observed to lead to cooperative enhancement of two-photon absorption (TPA) while maintaining high fluorescence quantum yield, thanks to localization of the emitting state. The comparison between results obtained in the Frenkel exciton scheme and ab initio results suggests the coherent coupling between branches as one of the possible mechanisms for the observed enhancement. New strategies for the rational design of NLO molecular assemblies are thus inferred on the basis of the acquired insights.  相似文献   

18.
Intracluster proton transfer from the matrix-assisted laser desorption/ionization matrix 2,5-dihydroxybenzoic acid (DHB) to the peptide valyl-prolyl-leucine has been investigated as a function of excitation laser wavelength and power. Ionization laser power studies at 308 nm indicate that cluster ionization occurs with a two-photon dependence, whereas matrix-to-analyte proton transfer and cluster dissociation requires an additional photon. At 266 nm, two-photon absorption leads to both cluster ionization and cluster dissociation/proton transfer. A consideration of these results clearly indicates that analyte protonation occurs following ionization of the cluster to produce a radical cation matrix/analyte cluster. Mass spectral features also indicate that mixed DHB/peptide cluster ionization can occur via two-photon ionization at wavelengths as long as 355 nm. These results suggest a reduction in the ionization potential of larger mixed DHB/peptide clusters of greater than 1 eV. The reduced ionization potential seen in these clusters suggests that radical cation initiated proton transfer remains a viable mechanism for analyte protonation in matrix-assisted laser desorption/ionization at these longer wavelengths.  相似文献   

19.
Solvent effects on the two-photon absorption of a symmetrical diamino substituted distyrylbenzene chromophore have been studied using the density functional response theory in combination with the polarizable continuum model. It is shown that the dielectric medium has a rather small effect both on the bond length alternation and on the one-photon absorption spectrum, but it affects significantly the two-photon absorption cross section. It is found that both one- and two-photon absorptions are extremely sensitive to the planarity of the molecule, and the absorption intensity can be dramatically reduced by the conformation distortion. It has led to the conclusion that the experimentally observed anomalous solvent effect on the two-photon absorption of dialkylamino substituted distyrylbenzene chromophores cannot be attributed to the intrinsic properties of a single molecule and its interaction with solvents.  相似文献   

20.
采用DFT/B3LYP/6-31G*和ZINDO-SOS方法, 系统地研究了两个系列(以苯为中心的a系列和以三苯胺为中心的b系列)星型准八极矩分子及其单枝物的单光子和双光子吸收性质. 结果表明, b系列分子有较大的双光子吸收截面和更长的单光子和双光子吸收波长. 星型三分枝分子的双光子吸收截面较其单个分枝增长了超过3倍因为存在分枝间的相互作用. 含1,3,4-噁二唑的分子比含2,1,3-苯并噻二唑的分子有更大的双光子吸收截面但是最大吸收波长却蓝移, 不在红外或近红外区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号