首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction forces between layers of the triblock copolymer Pluronic F108 adsorbed onto hydrophobic radio frequency glow discharge (RFGD) thin film surfaces and hydrophilic silica, in polymer-free 0.15 M NaCl solution, have been measured using the atomic force microscope (AFM) colloid probe technique. Compression of Pluronic F108 layers adsorbed on the hydrophobic RFGD surfaces results in a purely repulsive force due to the steric overlap of the layers, the form of which suggests that the PEO chains adopt a brush conformation. Subsequent fitting of these data to the polymer brush models of Alexander-de Gennes and Milner, Witten, and Cates confirms that the adsorbed Pluronic F108 adsorbs onto hydrophobic surfaces as a polymer brush with a parabolic segment density profile. In comparison, the interaction between Pluronic F108 layers adsorbed on silica exhibits a long ranged shallow attractive force and a weaker steric repulsion. The attractive component is reasonably well described by van der Waals forces, but polymer bridging cannot be ruled out. The weaker steric component of the force suggests that the polymer is less densely packed on the surface and is less extended into solution, existing as polymeric isolated mushrooms. When the surfaces are driven together at high piezo ramp velocities, an additional repulsive force is measured, attributable to hydrodynamic drainage forces between the surfaces. In comparing theoretical predictions of the hydrodynamic force to the experimentally obtained data, agreement could only be obtained if the flow profile of the aqueous solution penetrated significantly into the polymer brush. This finding is in line with the theoretical predictions of Milner and provides further evidence that the segment density profile of the adsorbed polymer brush is parabolic. A velocity dependent additional stepped repulsive force, reminiscent of a solvation oscillatory force, is also observed when the adsorbed layers are compressed under high loads. This additional force is presumably a result of hindered drainage of water due to the presence of a high volume fraction of polymer chains between the surfaces.  相似文献   

2.
Glycoproteins, such as lubricin, and hyaluronic acid (HA) play a prominent role in the boundary lubrication mechanism in diarthrodial joints. Although many studies have tried to elucidate the lubrication mechanisms of articular cartilage, the molecular details of how lubricin and HA interact with cartilage surfaces and mediate their interaction still remain poorly understood. Here we used model substrates, functionalized with self-assembled monolayers terminating in hydroxyl or methyl groups, (1) to determine the effect of surface chemistry on lubricin and HA adsorption using surface plasmon resonance (SPR) and (2) to study normal force interactions between these surfaces as a function of lubricin and HA concentration using colloidal probe microscopy. We found that lubricin is amphiphilic and adsorbed strongly onto both methyl- and hydroxyl-terminated surfaces. On hydrophobic surfaces, lubricin likely adopts a compact, looplike conformation in which its hydrophobic domains at the N and C termini serve as surface anchors. On hydrophilic surfaces, lubricin likely adsorbs anywhere along its hydrophilic central domain and adopts, with increasing solution concentration, an extended tail-like conformation. Overall, lubricin develops strong repulsive interactions when compressing two surfaces into contact. Furthermore, upon surface separation, adhesion occurs between the surfaces as a result of molecular bridging and chain disentanglement. This behavior is in contrast to that of HA, which does not adsorb appreciably on either of the model surfaces and does not develop significant repulsive interactions. Adhesive forces, particularly between the hydrophobic surfaces, are large and not appreciably affected by HA. For a mixture of lubricin and HA, we observed slightly larger adsorptions and repulsions than those found for lubricin alone. Our experiments suggest that this interaction depends on unspecific physical rather than chemical interactions between lubricin and HA. We speculate that in mediating interactions at the cartilage surface, an important role of lubricin, possibly in conjunction with HA, is one of providing a protective coating on cartilage surfaces that maintains the contacting surfaces in a sterically repulsive state.  相似文献   

3.
Interaction forces between pre-adsorbed layers of branched poly(ethylene imine) (PEI) of different molecular mass were studied with the colloidal probe technique, which is based on atomic force microscopy (AFM). During approach, the long-ranged forces between the surfaces are repulsive due to overlap of diffuse layers down to distances of a few nanometers, whereby regulation of the surface charge is observed. The ionic strength dependence of the observed diffuse layer potentials can be rationalized with a surface charge of 2.3 mC/m2. The forces remain repulsive down to contact, likely due to electro-steric interactions between the PEI layers. These electro-steric forces have a range of a few nanometers and appear to be superposed to the force originating from the overlap of diffuse layers. During retraction of the surfaces, erratic attractive forces are observed due to molecular adhesion events (i.e., bridging adhesion). The frequency of the molecular adhesion events increases with increasing the ionic strength. The force response of the PEI segments is dominated by rubber-like extension profiles. Strong adhesion forces are observed for low molecular mass PEI at short distances directly after separation, while for high molecular mass weaker adhesion forces at larger distances are more common. The work of adhesion was estimated by integrating the retraction force profiles, and it was found to increase with the ionic strength.  相似文献   

4.
Colloidal probe microscopy was employed to study interactions between cellulose surfaces in aqueous solutions. Hydrodynamic forces must be accounted for in data analysis. Long-range interactions betweeen cellulose surfaces are governed by double-layer forces and, once surfaces contact, by osmotic repulsive forces and viscoelasticity. Increasing the ionic strength decreases surface potentials and increases adhesive forces. Polyelectrolytes cause strong steric repulsion at high surface coverage, where interactions are sensitive to probe velocity. Polymer bridging occurs at low coverage. The conformation of adsorbed polyelectrolytes depends on the polymer concentration. Copyright 2000 Academic Press.  相似文献   

5.
The interactions between double-stranded DNA (dsDNA) and three different kinds of surfactants, i.e., cationic, anionic, and nonionic surfactants, were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and UV-vis spectroscopy. Multilayer films composed of DNA and surfactants were prepared at gold electrode by electrostatic or hydrophobic interactions. It was found that the cationic surfactant, CTAB, can bind to DNA by electrostatic interaction, and the electron transfer resistance of CTAB-DNA complex film increases first and then decreases with CTAB concentration. The anionic surfactant, LAS, can bind to DNA but by hydrophobic interaction, and the electron transfer resistance of the complex film keeps decreasing with LAS concentration. Nonionic surfactants can also directly bind to DNA by hydrophobic interaction. All the three different kinds of surfactants can form multilayer films with DNA on the electrode surface. The chemical structure of DNA keeps unchanged during interacting with these surfactants. The binding modes of DNA with these three different kinds of surfactants were also deduced.  相似文献   

6.
Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir-Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.  相似文献   

7.
A quartz crystal microbalance was used to study the influence of nanobubbles on the adsorption of polystyrene nanoparticles onto surfaces coated with gold, or coated with dodecanethiol or mercaptoundecanoic acid self-assembled monolayers (SAMs). Adsorption of the nanoparticles onto the surface causes the resonant frequency of the quartz crystal to decrease. We found that particles were adsorbed onto the gold-coated quartz crystal in air-rich water, but not in degassed water. This finding supports the long-standing hypothesis that nanobubbles play a key role in the long-range attractive force between hydrophobic surfaces in aqueous solutions. When the experiments were conducted using quartz crystals coated with a hydrophobic dodecanethiol SAM, the nanoparticles were adsorbed onto the surface even in degassed water due to the short-range hydrophobic interactions between the nanoparticles and the dodecanethiol molecules. In contrast, the nanoparticles were adsorbed to a lesser degree onto the hydrophilic mercaptoundecanoic acid-coated crystals due to electrostatic repulsive forces.  相似文献   

8.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

9.
Effects of ammonium surfactants with different hydrocarbon chain lengths (C8, C12, C16, and C18) on the colloidal forces between bitumen and silica were studied by atomic force microscopy. The results showed that the chain length of the ammonium surfactants had a significant impact on both the long-range interaction and adhesion forces. With the addition of surfactants with relative short chains of C8 and C12 in the solutions, the long-range repulsive force decreased or even became strong attractive force, while it became repulsive again in solutions of surfactants with long chains of C16 and C18. It was further observed that addition of Ca2+ in various surfactants solutions would either depress or enhance the colloidal interactions based on the surfactant chain lengths. It was believed that variation of the interaction behaviors resulted from the mono-layer or bilayer adsorption of various surfactant molecules on the negatively charged surfaces of bitumen and silica, which affected the surface wettability and the surface charge characteristics and then greatly changed the colloidal interactions. The findings indicated that, to have a high bitumen recovery and good froth quality, the surfactant type and concentration of the di-valent metal ions in the oil sand processing slurry must be well considered.  相似文献   

10.
We investigate the temperature dependence of interactions of β‐cyclodextrin (CD)/hexadecyltrimethylammonium bromide (CTAB) self‐assemblies with DNA during the decompaction of DNA/CTAB complexes. By combining direct imaging techniques with density and sound‐velocity measurements, we can explain the decompaction process and suggest a suitable model. The DNA‐decompaction process by using CDs is accompanied by interactions with surfaces, such as glass or mica. The mechanism of β‐CD/CTAB self‐assembly is elucidated and the immobilization of DNA onto negatively charged surfaces is explained. Differences between the fractal dimensions of DNA that is adsorbed onto the surfaces are related to strong and weak binding, which permit the partial relaxation of DNA on the surfaces. The β‐CD/CTAB self‐assembled monolayers are demonstrated to be a facile and efficient route for surface functionalization, which allows for the immobilization of biomacromolecules in close proximity without any intermediate binding or deprotection steps. Moreover, this route is expected to show several advantages that might contribute to improving the performance of future biosensors as gentle immobilization‐limiting alteration of the protein structure, oriented immobilization, thereby allowing homogeneous accessibility, reversible immobilization, thereby allowing reutilizations, and high compatibility with various types of biomacromolecules.  相似文献   

11.
The interaction forces between poly(N-isopropylacrylamide) (PNIPAAm)-grafted surfaces and colloidal particles in an aqueous solution were investigated using an atomic force microscope. Measurements were conducted between smooth silicon wafers on which PNIPAAm was terminally grafted and silica particles hydrophobized with a silanating reagent in an aqueous electrolyte solution under controlled temperature. Below the lower critical solution temperature (LCST) of PNIPAAm, there were large repulsive forces between the surfaces, both on approach and separation of the surfaces. On the other hand, above LCST, attractive forces were observed both in approaching and in separating force curves. When surface hydrophobicity of the particles increased, the maximum attractive force tended to increase. The changes of hydration state of the grafted PNIPAAm chains depending on temperature are considered to greatly alter the interaction force properties. The role of the intermolecular interaction between the PNIPAAm chains and the hydrophobic particles in the interaction forces is discussed.  相似文献   

12.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

13.
Interactions between preadsorbed films of poly(vinyl amine) (PVA) of two different line charge densities on silica substrates were studied with the colloidal probe technique based on the atomic force microscope (AFM). The preadsorbed films were prepared by adsorption of PVA from a pH 4 solution without any added salt. The highly charged PVA adsorbs in a flat configuration and in laterally heterogeneous layers, while the more weakly charged PVA analog adsorbs in thicker and more homogeneous films. As revealed by reflectivity measurements, such preadsorbed PVA films are stable in polyelectrolyte-free solutions. However, force measurements with the colloidal probe reveal that their interactions depend strongly on the ionic strength. Upon approach, interactions are dominated by electrostatic diffuse layer overlap forces. Both PVA films have very similar diffuse layer charge densities of about 1.5 mC/m2. Since these values are substantially lower than what would be expected from the total charge of the adsorbed polyelectrolytes measured by reflectivity, we infer that coadsorption of anions represents the principal mechanism in charge neutralization. Upon retraction, the adhesion between the films is dominated by bridging forces due to single polymer chains. Such bridging adhesion becomes progressively important with increasing ionic strength, whereby their range and frequency increase. The work of adhesion due to bridging is about 0.3 mN/m. At low ionic strengths, the films behave differently. While the highly charged PVA shows unspecific adhesion at small distances, the more weakly charged PVA analog shows few adhesion events occurring at long distances.  相似文献   

14.
Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reveals agglomeration of CBD adsorbed on cellulose surface. Despite an increase in surface charge owing to CBD binding to cellulose surface, force profiles are less repulsive for interactions involving, at least, one modified surface. Such changes are attributed to irregularity of the topography of protein surface and non-uniform distribution of surface charges on the surface of modified cellulose. Binding double CBD hybrid protein to cellulose surfaces causes adhesive forces at retraction, whereas separation curves obtained with cellulose modified with single CBD show small adhesion only at high ionic strength. This is possibly caused by the formation of the cross-links between cellulose surfaces in the case of double CBD.  相似文献   

15.
Colloidal forces between bitumen surfaces in aqueous solutions were measured with an atomic force microscope (AFM). The results showed a significant impact of solution pH, salinity, calcium and montmorillonite clay addition on both long-range (non-contact) and adhesion (pull-off) forces. Weaker long-range repulsive forces were observed under conditions of lower solution pH, higher salinity and higher calcium concentration. Lower solution pH, salinity and calcium concentration resulted in a stronger adhesion forces. The addition of montmorillonite clays increased long-range repulsive forces and decreased adhesion forces, particularly when co-added with calcium ions. The measured force profiles were fitted with extended DLVO theory to show the repulsive electrostatic double layer and attractive hydrophobic forces being the dominant components in the long-range forces between the bitumen surfaces. At a very short separation distance (less than 4–6 nm), a strong repulsion of steric origin was observed. The findings provide a fundamental understanding of bitumen emulsion stability and a mechanism of bitumen “aeration” in bitumen recovery processes from oil sands.  相似文献   

16.
We have measured the viscosity of suspensions of colloidal silica particles (d = 300 nm) and the properties of silica surfaces in solutions of a polymer consisting of zwitterionic monomer groups, poly(sulfobetaine methacrylate), polySBMA. This polymer has potential use in modifying surface properties because the polymer is net uncharged and therefore does not generate double-layer forces. The solubility of the polymer can be controlled and varies from poor to good by the addition of sodium chloride salt. Ellipsometry was used to demonstrate that polySBMA adsorbs to silica and exhibits an increase in surface excess at lower salt concentration, which is consistent with a smaller area per molecule at low salt concentration. Neutron reflectivity measurements show that the adsorbed polymer has a thickness of about 3.7 nm and is highly hydrated. The polymer can be used to exercise considerable control over suspension rheology. When silica particles are not completely covered in polymer, the suspension produces a highly viscous gel. Atomic force microscopy was used to show this is caused by bridging of polymer between the particles. At higher surface coverage, the polymer can produce either a high or very low viscosity slurry depending on the sodium chloride concentration. At high salt concentration, the suspension is stable, and the viscosity is lower. This is probably because the entrainment of many small ions renders the polymer film highly hydrophilic, producing repulsive surface forces and lubricating the flow of particles. At low salt concentrations, the polymer is barely soluble and more densely adsorbed. This produces less stable and more viscous solutions, which we attribute to attractive interactions between the adsorbed polymer layers.  相似文献   

17.
The conformation of poly(styrene sulfonate) (PSS) layers physisorbed from 1 M NaCl is determined by force measurements and imaging on two length scales. With colloidal probe technique steric forces as predicted for neutral grafted brushes are observed. On decrease and increase of the NaCl concentration, the grafting density remains constant, yet the brush thickness swells and shrinks reversibly with the salt concentration with an exponent of -0.3. At low salt conditions, the brush length amounts to 30% of the contour length, a behavior known for polyelectrolyte brushes and attributed to the entropy of the counterions trapped in the brush. Between a PSS layer and a pure colloidal silica sphere, the same steric forces are observed, and additionally at large separations (beyond the range of the steric repulsion) an electrostatic force is found. A negatively charged AFM tip penetrates the brush--a repulsive electrostatic force between the tip and surface is found, and single chains can be imaged. Thus, with the nanometer-sized AFM tip, the flatly adsorbed fraction of the PSS chains is seen, whereas the micrometer-sized colloidal probe interacts with the fraction of the chains penetrating into solution.  相似文献   

18.
The effect of the uptake of a low-molecular-weight amphiphilic diblock copolymer on the morphology of didodecyldimethylammonium bromide (DDAB) adsorbed layers on mica, the interactions between two coated surfaces, and the frictional properties of the boundary film have been studied using an atomic force microscope and a dynamic surface forces apparatus nanotribometer. When DDAB-coated surfaces in aqueous solution were compressed, hemifusion or removal of the adsorbed surfactant bilayers could not be induced, and no frictional force could be measured between the surfaces, which display superior lateral cohesion and lubricant properties. Coadsorbing octadecyl end modified poly(ethylene oxide) chains at low density facilitates hemifusion, generating significant shear stress and leading to stick-slip instabilities. The mixed films regain their lateral cohesion at higher adsorbed copolymer densities, but an extra short-range attraction brings the adsorbed layers into adhesive contact without causing bilayer hemifusion. Here, noticeable frictional forces are also measured.  相似文献   

19.
Using Born-Oppenheimer molecular dynamics within the density functional framework, we calculated the effective force acting on water-mediated peptide-peptide interaction between antiparallel β-sheets in an aqueous environment and also in the vicinity of a hydrophobic surface. From the magnitude of the effective force (corresponding to the slope of the free energy as a function of the interpeptide distance) and its sign (a negative value indicates an effective attraction, whereas a positive value indicates an effective repulsion) we can elucidate the fundamental differences of the water-mediated peptide-peptide interactions in those two environments. The computed effective forces indicate that the water-mediated interaction between peptides in an aqueous environment is attractive in the range of interpeptide distance d = 7-8 ? when hydrophobic surfaces are not nearby. Due to the stabilization of the water molecules bridging between the two β-sheets, a free energy barrier exists between the direct and indirect (water-mediated) interpeptide interactions. However, when the peptides are in the proximity of hydrophobic surfaces, this free energy barrier decreases because the hydrophobic surfaces enhance the interpeptide attraction by the destabilization and ease-to-libration of the bridging water molecules between them.  相似文献   

20.
Electrostatic and hydrophobic forces are generally recognized as important in bacterial adhesion. Current continuum models for these forces often wrongly predict measurements of bacterial adhesion forces. The hypothesis tested here is that even qualitative guides to bacterial adhesion often require more than continuum information about hydrophobic forces; they require knowledge about molecular details of the bacteria and substrate surface. In this study, four different strains of bacteria were adsorbed to silica surfaces hydrophobized with alkylsilanes. The thickness of the lipopolysaccharide layers varied on the different bacteria, and the lengths of the alkylsilane molecules were varied from experiment to experiment. Bacterial adhesion was assessed using column experiments and atomic force microscopy (AFM) experiments. Results show that hydrophobized surfaces have higher bacterial sticking coefficients and stronger adhesion forces than bare silica surfaces, as expected. However, adhesion decreased as the solution Debye length became longer than the alkylsilane, perhaps since the silane molecules could not "reach" the bacterial surface. Similarly, those bacteria with a long o-antigen layer had decreased adhesion, perhaps since the silane molecules could not reach surface-bound proteins on the bacteria. This study reveals that macroscopic measurements such as contact angle are not able to fully describe bacterial adhesion; rather, additional details such as the molecular length are required to predict adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号