首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In-situ high-pressure synchrotron angle-dispersive X-ray diffraction for gibbsite (aluminum trihydroxide) was performed at room temperature up to 20 GPa. A pressure-induced phase transition was observed at 2.6 GPa. The new high-pressure phase can be recovered at ambient pressure. Rietveld refinement shows that the new phase of Al(OH)(3) has an orthorhombic structure, spacegroup Pbca, and the lattice parameters at ambient condition are a = 868.57(5) pm, b = 505.21(4) pm, c = 949.54(6) pm, V = 416.67(6) x 10(6) pm(3) with Z = 8. The compressibility of gibbsite and the high-pressure polymorph was analyzed, and their bulk moduli were estimated as 49.8 +/- 1.8 and 81.0 +/- 5.2 GPa, respectively. First-principles calculations of the high-pressure phase were performed to determine the hydrogen positions and to confirm the structural stability of the new phase.  相似文献   

3.
The alkaline earth silicon nitrides AESiN(2) (AE = Ca, Sr, Ba) are reported, synthesized as clear, colorless, single crystals from molten sodium at 900-1100 degrees C or, in the cases of BaSiN(2) and SrSiN(2), as white powders by reacting powdered intermetallics AESi with flowing anhydrous ammonia at 550-1000 degrees C. Structures were determined from single-crystal X-ray diffraction measurements at 150 K: BaSiN(2) crystallizes in space group Cmca (No. 64) with a = 5.6046(1) A, b = 11.3605(3) A, c = 7.5851(2) A, and Z = 8. The structure consists of pairs of SiN(4) tetrahedra edge-linked to form bow-tie-shaped Si(2)N(6) dimers which share vertexes to form layers and has no analogue in oxide chemistry. SrSiN(2) has a distorted form of this structure (SrSiN(2): space group P2(1)/c (No. 14), a = 5.9750(5) A, b = 7.2826(7) A, c = 5.4969(4) A, beta = 113.496(4) degrees, Z = 4). The structure of CaSiN(2) contains only vertex-sharing SiN(4) tetrahedra, linked to form a three-dimensional stuffed-cristobalite type framework isostructural with KGaO(2) (CaSiN(2): space group Pbca (No. 61), a = 5.1229(3) A, b = 10.2074(6) A, c = 14.8233(9) A, Z = 16).  相似文献   

4.
The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.  相似文献   

5.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

6.
Two lanthanide-organic frameworks were synthesized via hydrothermal methods. Compound 1 ([(Eu,Tb)(C6H8O4)3(H2O)2].(C10H8N2), orthorhombic, Pbcn, a = 21.925(2) A, b = 7.6493(7) A, c = 19.6691(15) A, alpha = beta = gamma = 90 degrees, Z = 4) takes advantage of the similar ionic radii of the lanthanide elements to induce a mixed-lanthanide composition. Compound 2 ([Tb2(C6H8O4)3(H2O)2].(C10H8N2), orthorhombic, Pbcn, a = 21.866(3) A, b = 7.6101(10) A, c = 19.646(3) A, alpha = beta = gamma = 90 degrees, Z = 8) is the terbium-only analogue of compound 1. Solid-state measurements of their luminescence behavior demonstrate that the neutral guest molecule (4,4'-dipyridyl) residing in the extraframework channels is successful in sensitizing lanthanide ion emission. In compound 1, columinescence occurs, and both lanthanide ions show emission. Additionally, quantum yield and lifetime measurements support the premise that the Tb3+ center is also acting to sensitize the Eu3+, effectively enhancing Eu3+ emission.  相似文献   

7.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

8.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

9.
The Element-Nitrogen Double Bond in Cations of Cyclic Bis(amino)phospha-, -arsa-, -stiba-, and bismuthines Bis(amino)sila-phospha, -arsa-, -stiba-, and bismaetidines which bear a positive charge and incorporate a formally two valent element of group V are obtained from the corresponding bis(amino)elementchlorides by transfer of the chloride anion to the Lewis acids AlCl3, GaCl3, and InCl3. X-ray structure analyses on the compounds Me2Si(NtBu)2P+AlCl4- ( 2a ), Me2Si(NtBu)2Sb+AlCl4- ( 2c ), and Me2Si(NtBu)2Bi+AlCl4 -( 2d ) reveal that the electron lack at the element(V) can be compensated by two different bonding mechanisms. In the case of the phosphorus derivative 2a the electronic balance is accomplished by intramolecular backbonding from the neighbouring nitrogen atoms (mean N-P+ = 163.3 pm). In the antimony and bismuth derivatives ( 2c and 2d ) the chlorine atoms of the AlCl4 anions coordinate to the unsaturated element(V) in an intermolecular manner (mean: Sb·Cl = 305, Bi ?Cl = 309 pm). The N? Si? N group which is identical in all molecules, may be used as a probe for the electronic balance within the ring systems. The bond lengths and angles vary dramatically with respect to the electron acceptor properties of the element to which the group is bonded. 2a forms orthorhombic crystals, space group Pnma, Z = 8 (a = 3023.7(9), b = 1001.0(3), c = 1414.6(5) pm), and 2c and 2d are isotypic, again orthorhombic, space group Pbca with Z = 8 ( 2c a = 2030.8(8), b = 1193.1(4), c = 1777.1(6) pm; 2d : a = 2025.9(8), b = 1198.0(4), c = 1761.3(6) pm).  相似文献   

10.
Koo HJ  Whangbo MH 《Inorganic chemistry》2000,39(16):3599-3604
The spin exchange interactions in the ambient-pressure orthorhombic (APO), high-pressure orthorhombic (HPO), and ambient-pressure monoclinic (APM) phases of the vanadium pyrophosphate, (VO)2P2O7, were analyzed by calculating the spin-orbital interaction energies delta e-delta e0 of their spin dimers. The anisotropy of the spin exchange interactions in the HPO phase is well explained by the delta e-delta e0 values. For the APO phase, the reported crystal structure does not provide accurate enough delta e-delta e0 values to conclude unambiguously which of the V1-V2 and V3-V4 chains has a larger spin gap and which of the bridged and edge-sharing spin dimers has a stronger spin exchange interaction in the V1-V2 and V3-V4 chains. The APM phase is predicted to exhibit essentially two spin gaps, with a large spin gap for the V8-V5-V7-V6 chain and a very small one for the V4-V2-V3-V1 chain.  相似文献   

11.
解文杰  徐鑫 《无机化学学报》2011,27(9):1738-1742
通过固相反应制备了系列Ca掺杂的Ba2Al2Si10N14O4∶Eu2+绿色荧光粉,发现当半径较大的Ba被Ca取代后导致了晶格的收缩,通过X射线衍射(XRD)测量和Unitcell软件计算发现Ca的最大掺杂量在20%。Ca掺入Eu0.4Ba1.6Al2Si10N14O4荧光粉后,可有效地提高光转换性能,并使激发光谱发生一定程度的红移和宽化,从而被近紫外宽波段光有效激发,与近紫外LED的发射光谱匹配。同时Ca的掺杂也使发射光谱发生了可控的红移,可以由520 nm的绿光红移至548 nm的黄光区域。进一步发现Eu2+的淬灭浓度随着20%Ca的掺入而降低,这是由于Ca掺入导致的晶格收缩使Eu2+离子间距离减小。最后在CIE色度图中对不同Ca,Eu浓度的荧光粉的色坐标位置进行比较,发现可通过Ca,Eu浓度的变化在很大范围内调制荧光粉的发光性能。  相似文献   

12.
利用高温固相反应制备了Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)(x=0,0.05,0.10,0.15,0.20,0.25,0.30,0.325,0.35,0.375,0.40,0.425)一系列试样,系统研究了Mn~(2+)取代基质中Ca~(2+)进入晶格中对其晶胞参数和光谱特性影响。Mn~(2+)以类质同相替代Ca~(2+)进入晶体晶格中,形成了连续固溶体,试样均为三斜晶系,P空间群。随着Mn~(2+)掺杂量增加,晶胞参数(a,b,c,γ)和晶胞体积V均呈线性递减,且a轴减幅最大,b轴最小,晶面夹角(α,β)呈线性递增。在357 nm激发下,获得的Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)发射光谱均有Eu~(2+)的4f→5d跃迁产生的433 nm和Mn~(2+)的~4T_1(~4G)→~6A_1(~6S)跃迁产生的567 nm两个宽带谱组成。在荧光粉Ca_(0.955-x)Al_2Si_2O_8∶0.045Eu~(2+),xMn~(2+)中,Eu~(2+)与Mn~(2+)间存在能量传递,Eu~(2+)→Mn~(2+)间能量传递的临界距离R_(Eu-Mn)=0.947 1 nm,Eu~(2+)→Mn~(2+)能量传递过程为电四极-电四极的多极矩相互作用。通过改变Mn~(2+)掺杂量,在紫外芯片的有效激发下,荧光粉的发射光颜色可从蓝光区(0.158 2,0.086 0)逐渐移至近白光区(0.295 3,0.298 9),可获得一种紫外激发适用于白光LED的单一组分白色荧光粉。  相似文献   

13.
Luminescence of divalent europium has been investigated for the first time in metal hydrides. A complete solid-solution series was found for the pseudobinary system Eu(x)Sr(1-x)H(2) [a = 637.6(1) pm -12.1(3)x pm, b = 387.0(1)-6.5(2)x pm, c = 732.2(2)-10.1(4)x pm]. Europium-doped alkaline-earth hydrides Eu(x)M(1-x)H(2) (M = Ca, Sr, Ba) with a small europium concentration (x = 0.005) exhibit luminescence with maximum emission wavelengths of 764 nm (M = Ca), 728 nm (M = Sr), and 750 nm (M = Ba); i.e., the emission energy of divalent europium shows an extremely large red shift compared to the emission energies of fluorides or oxides. Theoretical calculations (LDA+U) confirm decreasing band gaps with increasing europium content of the solid solutions.  相似文献   

14.
In situ high-pressure Raman spectroscopy studies on LiNH2 (lithium amide) have been performed at pressures up to 25 GPa. The pressure-induced changes in the Raman spectra of LiNH2 indicates a phase transition that begins at approximately 12 GPa is complete at approximately 14 GPa from ambient-pressure alpha-LiNH2 (tetragonal, I) to a high-pressure phase denoted here as beta-LiNH2. This phase transition is reversible upon decompression with the recovery of the alpha-LiNH2 phase at approximately 8 GPa. The N-H internal stretching modes (nu([NH2]-)) display an increase in frequency with pressure, and a new stretching mode corresponding to high-pressure beta-LiNH2 phase appears at approximately 12.5 GPa. Beyond approximately 14 GPa, the N-H stretching modes settle into two shouldered peaks at lower frequencies. The lattice modes show rich pressure dependence exhibiting multiple splitting and become well-resolved at pressures above approximately 14 GPa. This is indicative of orientational ordering [NH2]- ions in the lattice of the high-pressure beta-LiNH2 phase.  相似文献   

15.
Ternary Nitridoborates. 2. Synthesis, Crystal Structure, and Vibrational Spectra of New Ternary Compounds with the [N–B–N]3– Anion The isotypic compounds LiM4[BN2]3 (M = Ca, Sr, Ba, Eu) and NaM4[BN2]3 (M = Sr, Ba) are formed as colorless to pale yellow prismatic crystals (black with Eu) by reaction of the binary components Li3N, M3N2, EuN and Na, NaN3, Ba3N2 and BN in sealed niobium ampoules at 1375 and 1275 K, respectively. The linear anions [N–B–N]3– have bond lengths d(B–N) between 132.6 and 136.6 pm. Vibrational frequencies and force constants f(B–N) = 7.25–7.89 Ncm–1 reveal significant drifts related to bond length and effective anionic charge. The cubic crystal structures (Im3m (No. 229), Z = 2; LiM4[BN2]3: a(Ca) = 711.5 pm; a(Sr) = 745.6 pm; a(Eu) = 742.5 pm, a(Ba) = 788.0 pm and NaM4[BN2] 3 : a(Sr) = 756.8 pm; a(Ba) = 791.7 pm)) are stuffed derivatives of the β‐PtHg4 structure type, and the range of existence of this cubic structure is derived from the molar volume and the ionic radii. The cations form a partial structure of centered cubes E1(E2)8 which are condensed to a [E1(E2)8/2] network (E1 = Li, Na; E2 = Ca, Sr, Ba, Eu). The remaining open cubes are filled by the [BN2]3– anions yielding two interpenetrating [E1(BN2)6/2] networks. Periodic Nodal Surfaces (PNS) of Im3m symmetry show the regions of different interactions.  相似文献   

16.
Wang J  Yang M  Pan MY  Xia SQ  Tao XT  He H  Darone G  Bobev S 《Inorganic chemistry》2011,50(17):8020-8027
A series of ternary Zintl phases, Ca(2)CdP(2), Ca(2)CdAs(2), Sr(2)CdAs(2), Ba(2)CdAs(2), and Eu(2)CdAs(2), have been synthesized through high temperature metal flux reactions, and their structures have been characterized by single-crystal X-ray diffraction. They belong to the Yb(2)CdSb(2) structure type and crystallize in the orthorhombic space group Cmc2(1) (No. 36, Z = 4) with cell dimensions of a = 4.2066(5), 4.3163(5), 4.4459(7), 4.5922(5), 4.4418(9) ?; b = 16.120(2), 16.5063(19), 16.904(3), 17.4047(18), 16.847(4) ?; c = 7.0639(9), 7.1418(8), 7.5885(11), 8.0526(8), 7.4985(16) ? for Ca(2)CdP(2) (R1 = 0.0152, wR2 = 0.0278), Ca(2)CdAs(2) (R1 = 0.0165, wR2 = 0.0290), Sr(2)CdAs(2) (R1 = 0.0238, wR2 = 0.0404), Ba(2)CdAs(2) (R1 = 0.0184, wR2 = 0.0361), and Eu(2)CdAs(2) (R1 = 0.0203, wR2 = 0.0404), respectively. Among these, Ca(2)CdAs(2) was found to form with another closely related structure, depending on the experimental conditions--monoclinic space group Cm (No. 8, Z = 10) with lattice constants a = 21.5152(3) ?, b = 4.30050(10) ?, c = 14.3761(2) ? and β = 110.0170(10)° (R1 = 0.0461, wR2 = 0.0747). UV/vis optical absorption spectra for both forms of Ca(2)CdAs(2) show band gaps on the order of 1.0 eV, suggesting semiconducting properties, which have also been confirmed through electronic band structure calculations based on the density-functional theory. Results from differential scanning calorimetry measurements probing the thermal stability and phase transitions in the two Ca(2)CdAs(2) polymorphs are discussed. Magnetic susceptibility measurements for Eu(2)CdAs(2), indicating divalent Eu(2+) cations, are presented as well.  相似文献   

17.
Just O  Rees WS 《Inorganic chemistry》2001,40(8):1751-1755
Anhydrous lanthanide(III) chlorides (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) react with 3 equiv of lithium 2,2,5,5-tetramethyl-2,5-disila-1-azacyclopentanide, Li[N[Si(CH3)2CH2Ch2Si(CH3)2]], in THF or Et(2)O to afford the monomeric four-coordinate heteroleptic ate complexes Ln[N[Si(CH3)2CH2CH2Si(CH3)2]]3(mu-Cl)Li(THF/Et2O)3 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7), Tm (8), Yb (9)), whose solid-state structures were determined by the single-crystal X-ray diffraction technique. All complexes additionally were characterized by melting point determination, elemental analyses, and mass spectrometry.  相似文献   

18.
The treatment of SiCl4 with 4 equiv of Li2(Nnaph) (naph = 1-naphthyl) in diethyl ether gives (Et2O.Li)4[Si(Nnaph)4] (4), which, upon reaction with excess tBuNH3Cl or MeO3SCF3, generates Si[N(H)naph]4 (5) or Si[N(Me)naph]4 (6), respectively. The centrosymmetric dimer (THF.Li3[Si(NiPr)3(NHiPr)])2 (7), formed via trilithiation of Si[N(H)iPr]4 with n-butyllithium, consists of a bis-THF-solvated Li6(NiPr)6 cyclic ladder bicapped by two SiN(H)iPr units. Crystal data for 7: C32H74Li6N8O2Si2, monoclinic, P2(1)/n, a = 10.661(7) A, b = 16.964(5) A, c = 12.405(4) A, beta = 93.22(4) degrees, V = 2239.9(15) A3, and Z = 2.  相似文献   

19.
The isotypic title compounds Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3] were prepared by reaction of Pr, Nd, or Sm, with barium, BaCO3, Si(NH)2, and poly(boron amide imide) in nitrogen atmosphere in tungsten crucibles using a radiofrequency furnace at temperatures up to 1650 C. They were obtained as main products (approximately 70%) embedded in a very hard glass matrix in the form of intense dark green (Pr), orange-brown (Sm), or dark red (Nd) large single crystals, respectively. The stoichiometric composition of Ba4Sm7[Si12N23O][BN3] was verified by a quantitative elemental analysis. According to the single-crystal X-ray structure determinations (Ba4Ln7[Si12N23][BN3], Z= , P6 with Ln = Pr: a = 1225.7(1), c = 544.83(9) pm, R1 = 0.013, wR2 = 0.030; Ln = Nd: a = 1222.6(1), c = 544.6(1) pm, R1 = 0.017, wR2 = .039; Ln = Sm: a = 1215.97(5), c = 542.80(5) pm, R1 = 0.047, wR2 = 0.099) all three compounds are built up by a framework structure [Si12N23O]23- of corner-sharing SiX4 tetrahedrons (X = O, N). The oxygen atoms are randomly distributed over the X positions. The trigonal-planar orthonitridoborate ions [BN3]6- and also the Ln(3)3+ are situated in hexagonal cages of the framework (bond lengths Si-(N/O) 169-179 pm for Ln=Pr). The remaining Ba2+ and Ln3- ions are positioned in channels of the large-pored network. The trigonal-planar [BN3]6- ions have a B-N distance of 147.1(6) pm (for Ln = Pr). Temperature-dependent susceptibility measurements for Ba4Nd7[Si12N23O][BN3] revealed Curie-Weiss behavior above 60 K with an experimental magnetic moment of muexp = 3.36(5) microB/Nd. The deviation from Curie-Weiss behavior below 60 K may be attributed to crystal field splitting of the J = 9/2 ground state of the Nd3+ ions. No magnetic ordering is evident down to 4.2 K.  相似文献   

20.
The neutral pentacoordinate monoamidinatosilicon(IV) complex 1 (SiN(2)Cl(3) skeleton) and the neutral hexacoordinate monoamidinatosilicon(IV) complexes 2-9 (SiN(3)OF(2), SiN(3)OCl(2), SiN(3)OBr(2), SiN(5)O and SiN(3)O(3) skeletons) were synthesised and characterised by elemental analyses, single-crystal X-ray diffraction (except for 1) and NMR spectroscopy in the solid state and in solution. Compounds 2-9 contain one bidentate monoanionic N,N'-diisopropylbenzamidinato ligand, one bidentate monoanionic ligand derived from 8-hydroxyquinoline and (i) two identical monoanionic ligands (F, Cl, Br, N(3), NCO, NCS, OSO(2)CF(3)) or (ii) one bidentate dianionic benzene-1,2-diolato ligand. The dynamic behavior of 2-4 (SiN(3)OX(2) skeleton; X = F, Cl, Br) and 9 (SiN(3)O(3)) in solution was studied by multinuclear variable-temperature NMR experiments. Compound 1 was synthesised by reaction of SiCl(4) with the corresponding lithium amidinate, and compound 2 was obtained by reaction of 1 with 8-hydroxyquinoline and triethylamine. Compound 2 served as the starting material in the syntheses of 3-9, in which the two chloro ligands of 2 were substituted by two identical (pseudo)halogeno ligands, two trifluoromethanesulfonato ligands or one benzene-1,2-diolato ligand. Compounds 3 and 4 contain the novel SiN(3)OBr(2) and SiN(3)OF(2) skeletons, while compounds 5-7 are the first neutral hexacoordinate silicon(IV) complexes with an SiN(5)O skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号