首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistically motivated algorithms for the solution of stochastic programming problems typically suffer from their inability to recognize optimality of a given solution algorithmically. Thus, the quality of solutions provided by such methods is difficult to ascertain. In this paper, we develop methods for verification of optimality conditions within the framework of Stochastic Decomposition (SD) algorithms for two stage linear programs with recourse. Consistent with the stochastic nature of an SD algorithm, we provide termination criteria that are based on statistical verification of traditional (deterministic) optimality conditions. We propose the use of bootstrap methods to confirm the satisfaction of generalized Kuhn-Tucker conditions and conditions based on Lagrange duality. These methods are illustrated in the context of a power generation planning model, and the results are encouraging.This work was supported in part by Grant No. AFOSR-88-0076 from the Air Force Office of Scientific Research and Grant No. DDM-89-10046 from the National Science Foundation.  相似文献   

2.
Outer linearization methods for two-stage stochastic linear programs with recourse, such as the L-shaped algorithm, generally apply a single optimality cut on the nonlinear objective at each major iteration, while the multicut version of the algorithm allows for several cuts to be placed at once. In general, the L-shaped algorithm tends to have more major iterations than the multicut algorithm. However, the trade-offs in terms of computational time are problem dependent. This paper investigates the computational trade-offs of adjusting the level of optimality cut aggregation from single cut to pure multicut. Specifically, an adaptive multicut algorithm that dynamically adjusts the aggregation level of the optimality cuts in the master program, is presented and tested on standard large-scale instances from the literature. Computational results reveal that a cut aggregation level that is between the single cut and the multicut can result in substantial computational savings over the single cut method.  相似文献   

3.
In this paper, we propose a new method to compute lower bounds on the optimal objective value of a stochastic program and show how this method can be used to construct separable approximations to the recourse functions. We show that our method yields tighter lower bounds than Jensen’s lower bound and it requires a reasonable amount of computational effort even for large problems. The fundamental idea behind our method is to relax certain constraints by associating dual multipliers with them. This yields a smaller stochastic program that is easier to solve. We particularly focus on the special case where we relax all but one of the constraints. In this case, the recourse functions of the smaller stochastic program are one dimensional functions. We use these one dimensional recourse functions to construct separable approximations to the original recourse functions. Computational experiments indicate that our lower bounds can significantly improve Jensen’s lower bound and our recourse function approximations can provide good solutions.  相似文献   

4.
A parallel inexact Newton method with a line search is proposed for two-stage quadratic stochastic programs with recourse. A lattice rule is used for the numerical evaluation of multi-dimensional integrals, and a parallel iterative method is used to solve the quadratic programming subproblems. Although the objective only has a locally Lipschitz gradient, global convergence and local superlinear convergence of the method are established. Furthermore, the method provides an error estimate which does not require much extra computation. The performance of the method is illustrated on a CM5 parallel computer.This work was supported by the Australian Research Council and the numerical experiments were done on the Sydney Regional Centre for Parallel Computing CM5.  相似文献   

5.
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory’s fractional cutting plane algorithm or a branch-and-bound algorithm is applied.  相似文献   

6.
We derive a cutting plane decomposition method for stochastic programs with first-order dominance constraints induced by linear recourse models with continuous variables in the second stage.  相似文献   

7.
In this paper we study the stability of solutions to stochastic programming problems with complete recourse and show the Lipschitz continuity of optimal solutions as well as the associated Lagrange multipliers with respect to the parameters of the distribution function.  相似文献   

8.
Ariyawansa and Zhu have recently introduced (two-stage) stochastic semidefinite programs (with recourse) (SSDPs) [1] and chance-constrained semidefinite programs (CCSDPs) [2] as paradigms for dealing with uncertainty in applications leading to semidefinite programs. Semidefinite programs have been the subject of intense research during the past 15 years, and one of the reasons for this research activity is the novelty and variety of applications of semidefinite programs. This research activity has produced, among other things, efficient interior point algorithms for semidefinite programs. Semidefinite programs however are defined using deterministic data while uncertainty is naturally present in applications. The definitions of SSDPs and CCSDPs in [1] and [2] were formulated with the expectation that they would enhance optimization modeling in applications that lead to semidefinite programs by providing ways to handle uncertainty in data. In this paper, we present results of our attempts to create SSDP and CCSDP models in four such applications. Our results are promising and we hope that the applications presented in this paper would encourage researchers to consider SSDP and CCSDP as new paradigms for stochastic optimization when they formulate optimization models.  相似文献   

9.
For two-stage stochastic programs with integrality constraints in the second stage, we study continuity properties of the expected recourse as a function both of the first-stage policy and the integrating probability measure.Sufficient conditions for lower semicontinuity, continuity and Lipschitz continuity with respect to the first-stage policy are presented. Furthermore, joint continuity in the policy and the probability measure is established. This leads to conclusions on the stability of optimal values and optimal solutions to the two-stage stochastic program when subjecting the underlying probability measure to perturbations.This research is supported by the Schwerpunktprogramm Anwendungsbezogene Optimierung und Steuerung of the Deutsche Forschungsgemeinschaft.The main part of the paper was written while the author was an assistant at the Department of Mathematics at Humboldt University Berlin.  相似文献   

10.
We consider two-stage risk-averse stochastic optimization problems with a stochastic ordering constraint on the recourse function. Two new characterizations of the increasing convex order relation are provided. They are based on conditional expectations and on integrated quantile functions: a counterpart of the Lorenz function. We propose two decomposition methods to solve the problems and prove their convergence. Our methods exploit the decomposition structure of the risk-neutral two-stage problems and construct successive approximations of the stochastic ordering constraints. Numerical results confirm the efficiency of the methods.  相似文献   

11.
Nested decomposition is extended to the case of arborescent nonlinear programs. Duals of extensive forms of nonlinear multistage stochastic programs constitute a particular class of those problems; the method is tested on a set of problems of that type.  相似文献   

12.
We consider the incorporation of a time-consistent coherent risk measure into a multi-stage stochastic programming model, so that the model can be solved using a SDDP-type algorithm. We describe the implementation of this algorithm, and study the solutions it gives for an application of hydro-thermal scheduling in the New Zealand electricity system. The performance of policies using this risk measure at different levels of risk aversion is compared with the risk-neutral policy.  相似文献   

13.
This paper summarizes the main results on approximate nonlinear programming algorithms investigated by the author. These algorithms are obtained by combining approximation and nonlinear programming algorithms. They are designed for programs in which the evaluation of the objective functions is very difficult so that only their approximate values can be obtained. Therefore, these algorithms are particularly suitable for stochastic programming problems with recourse.Project supported by the National Natural Science Foundation of China.  相似文献   

14.
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is contained in a finite set. Furthermore, we present a basic scheme to enumerate this set and suggest improvements to reduce the number of function evaluations needed.  相似文献   

15.
In this paper, two-stage stochastic quadratic programming problems with equality constraints are considered. By Monte Carlo simulation-based approximations of the objective function and its first (second)derivative,an inexact Lagrange-Newton type method is proposed.It is showed that this method is globally convergent with probability one. In particular, the convergence is local superlinear under an integral approximation error bound condition.Moreover, this method can be easily extended to solve stochastic quadratic programming problems with inequality constraints.  相似文献   

16.
We consider a general adversarial stochastic optimization model. Our model involves the design of a system that an adversary may subsequently attempt to destroy or degrade. We introduce SPAR, which utilizes mixed-integer programming for the design decision and a Markov decision process (MDP) for the modeling of our adversarial phase.  相似文献   

17.
Stochastic linear programs have been rarely used in practical situations largely because of their complexity. In evaluating these problems without finding the exact solution, a common method has been to find bounds on the expected value of perfect information. In this paper, we consider a different method. We present bounds on the value of the stochastic solution, that is, the potential benefit from solving the stochastic program over solving a deterministic program in which expected values have replaced random parameters. These bounds are calculated by solving smaller programs related to the stochastic recourse problem.This paper is an extension of part of the author's dissertation in the Department of Operations Research, Stanford University, Stanford, California. The research was supported at Stanford by the Department of Energy under Contract DE-AC03-76SF00326, PA#DE-AT03-76ER72018, Office of Naval Research under Contract N00014-75-C-0267 and the National Science Foundation under Grants MCS76-81259, MCS-7926009 and ECS-8012974 (formerly ENG77-06761).  相似文献   

18.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

19.
Scenario tree reduction for multistage stochastic programs   总被引:3,自引:0,他引:3  
A framework for the reduction of scenario trees as inputs of (linear) multistage stochastic programs is provided such that optimal values and approximate solution sets remain close to each other. The argument is based on upper bounds of the L r -distance and the filtration distance, and on quantitative stability results for multistage stochastic programs. The important difference from scenario reduction in two-stage models consists in incorporating the filtration distance. An algorithm is presented for selecting and removing nodes of a scenario tree such that a prescribed error tolerance is met. Some numerical experience is reported.  相似文献   

20.
In this paper we study mathematically and computationally optimal control problems for stochastic elliptic partial differential equations. The control objective is to minimize the expectation of a tracking cost functional, and the control is of the deterministic, distributed type. The main analytical tool is the Wiener-Itô chaos or the Karhunen-Loève expansion. Mathematically, we prove the existence of an optimal solution; we establish the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations; we represent the input data in their Wiener-Itô chaos expansions and deduce the deterministic optimality system of equations. Computationally, we approximate the optimality system through the discretizations of the probability space and the spatial space by the finite element method; we also derive error estimates in terms of both types of discretizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号