首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper, we propose a new method to compute lower bounds on the optimal objective value of a stochastic program and show how this method can be used to construct separable approximations to the recourse functions. We show that our method yields tighter lower bounds than Jensen’s lower bound and it requires a reasonable amount of computational effort even for large problems. The fundamental idea behind our method is to relax certain constraints by associating dual multipliers with them. This yields a smaller stochastic program that is easier to solve. We particularly focus on the special case where we relax all but one of the constraints. In this case, the recourse functions of the smaller stochastic program are one dimensional functions. We use these one dimensional recourse functions to construct separable approximations to the original recourse functions. Computational experiments indicate that our lower bounds can significantly improve Jensen’s lower bound and our recourse function approximations can provide good solutions.  相似文献   

2.
We present alternative methods for verifying the quality of a proposed solution to a two stage stochastic program with recourse. Our methods revolve around implications of a dual problem in which dual multipliers on the nonanticipativity constraints play a critical role. Using randomly sampled observations of the stochastic elements, we introduce notions of statistical dual feasibility and sampled error bounds. Additionally, we use the nonanticipativity multipliers to develop connections to reduced gradient methods. Finally, we propose a statistical test based on directional derivatives. We illustrate the applicability of these tests via some examples. This work was supported in part by Grant No. NSF-DMI-9414680 from the National Science Foundation  相似文献   

3.
This paper formally introduces and studies a non-cooperative multi-agent game under uncertainty. The well-known Nash equilibrium is employed as the solution concept of the game. While there are several formulations of a stochastic Nash equilibrium problem, we focus mainly on a two-stage setting of the game wherein each agent is risk-averse and solves a rival-parameterized stochastic program with quadratic recourse. In such a game, each agent takes deterministic actions in the first stage and recourse decisions in the second stage after the uncertainty is realized. Each agent’s overall objective consists of a deterministic first-stage component plus a second-stage mean-risk component defined by a coherent risk measure describing the agent’s risk aversion. We direct our analysis towards a broad class of quantile-based risk measures and linear-quadratic recourse functions. For this class of non-cooperative games under uncertainty, the agents’ objective functions can be shown to be convex in their own decision variables, provided that the deterministic component of these functions have the same convexity property. Nevertheless, due to the non-differentiability of the recourse functions, the agents’ objective functions are at best directionally differentiable. Such non-differentiability creates multiple challenges for the analysis and solution of the game, two principal ones being: (1) a stochastic multi-valued variational inequality is needed to characterize a Nash equilibrium, provided that the players’ optimization problems are convex; (2) one needs to be careful in the design of algorithms that require differentiability of the objectives. Moreover, the resulting (multi-valued) variational formulation cannot be expected to be of the monotone type in general. The main contributions of this paper are as follows: (a) Prior to addressing the main problem of the paper, we summarize several approaches that have existed in the literature to deal with uncertainty in a non-cooperative game. (b) We introduce a unified formulation of the two-stage SNEP with risk-averse players and convex quadratic recourse functions and highlight the technical challenges in dealing with this game. (c) To handle the lack of smoothness, we propose smoothing schemes and regularization that lead to differentiable approximations. (d) To deal with non-monotonicity, we impose a generalized diagonal dominance condition on the players’ smoothed objective functions that facilitates the application and ensures the convergence of an iterative best-response scheme. (e) To handle the expectation operator, we rely on known methods in stochastic programming that include sampling and approximation. (f) We provide convergence results for various versions of the best-response scheme, particularly for the case of private recourse functions. Overall, this paper lays the foundation for future research into the class of SNEPs that provides a constructive paradigm for modeling and solving competitive decision making problems with risk-averse players facing uncertainty; this paradigm is very much at an infancy stage of research and requires extensive treatment in order to meet its broad applications in many engineering and economics domains.  相似文献   

4.
We consider two-stage risk-averse stochastic optimization problems with a stochastic ordering constraint on the recourse function. Two new characterizations of the increasing convex order relation are provided. They are based on conditional expectations and on integrated quantile functions: a counterpart of the Lorenz function. We propose two decomposition methods to solve the problems and prove their convergence. Our methods exploit the decomposition structure of the risk-neutral two-stage problems and construct successive approximations of the stochastic ordering constraints. Numerical results confirm the efficiency of the methods.  相似文献   

5.
We discuss issues pertaining to the domination from above of the second-stage recourse function of a stochastic linear program and we present a scheme to majorize this function using a simpler sublinear function. This majorization is constructed using special geometrical attributes of the recourse function. The result is a proper, simplicial function with a simple characterization which is well-suited for calculations of its expectation as required in the computation of stochastic programs. Experiments indicate that the majorizing function is well-behaved and stable.  相似文献   

6.
An effective algorithm for solving stochastic resource allocation problems is to build piecewise linear, concave approximations of the recourse function based on sample gradient information. Algorithms based on this approach are proving useful in application areas such as the newsvendor problem, physical distribution and fleet management. These algorithms require the adaptive estimation of the approximations of the recourse function that maintain concavity at every iteration. In this paper, we prove convergence for a particular version of an algorithm that produces approximations from stochastic gradient information while maintaining concavity.  相似文献   

7.
Stability analysis for stochastic programs   总被引:4,自引:0,他引:4  
For stochastic programs with recourse and with (several joint) probabilistic constraints, respectively, we derive quantitative continuity properties of the relevant expectation functionals and constraint set mappings. This leads to qualitative and quantitative stability results for optimal values and optimal solutions with respect to perturbations of the underlying probability distributions. Earlier stability results for stochastic programs with recourse and for those with probabilistic constraints are refined and extended, respectively. Emphasis is placed on equipping sets of probability measures with metrics that one can handle in specific situations. To illustrate the general stability results we present possible consequences when estimating the original probability measure via empirical ones.  相似文献   

8.
We consider distributionally robust two-stage stochastic convex programming problems, in which the recourse problem is linear. Other than analyzing these new models case by case for different ambiguity sets, we adopt a unified form of ambiguity sets proposed by Wiesemann, Kuhn and Sim, and extend their analysis from a single stochastic constraint to the two-stage stochastic programming setting. It is shown that under a standard set of regularity conditions, this class of problems can be converted to a conic optimization problem. Numerical results are presented to show the efficiency of the distributionally robust approach.  相似文献   

9.
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two-stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DR-SIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed-integer second-order conic program.  相似文献   

10.
《Optimization》2012,61(9):1983-1997
For mixed-integer quadratic program where all coefficients in the objective function and the right-hand sides of constraints vary simultaneously, we show locally Lipschitz continuity of its optimal value function, and derive the corresponding global estimation; furthermore, we also obtain quantitative estimation about the change of its optimal solutions. Applying these results to two-stage quadratic stochastic program with mixed-integer recourse, we establish quantitative stability of the optimal value function and the optimal solution set with respect to the Fortet-Mourier probability metric, when the underlying probability distribution is perturbed. The obtained results generalize available results on continuity properties of mixed-integer quadratic programs and extend current results on quantitative stability of two-stage quadratic stochastic programs with mixed-integer recourse.  相似文献   

11.
This paper is concerned with implementational issues and computational testing of bounds-based approximations for solving two-stage stochastic programs with fixed recourse. The implemented bounds are those derived by the authors previously, using first and cross moment information of the random parameters and a convex-concave saddle property of the recourse function. The paper first examines these bounds with regard to their tightness, monotonic behavior, convergence properties, and computationally exploitable decomposition structures. Subsequently, the bounds are implemented under various partitioning/refining strategies for the successive approximation. The detailed numerical experiments demonstrate the effectiveness in solving large scenario-based two-stage stochastic optimization problems throughsuccessive scenario clusters induced by refining the approximations.  相似文献   

12.
In this paper, we study recourse-based stochastic nonlinear programs and make two sets of contributions. The first set assumes general probability spaces and provides a deeper understanding of feasibility and recourse in stochastic nonlinear programs. A sufficient condition, for equality between the sets of feasible first-stage decisions arising from two different interpretations of almost sure feasibility, is provided. This condition is an extension to nonlinear settings of the “W-condition,” first suggested by Walkup and Wets (SIAM J. Appl. Math. 15:1299–1314, 1967). Notions of complete and relatively-complete recourse for nonlinear stochastic programs are defined and simple sufficient conditions for these to hold are given. Implications of these results on the L-shaped method are discussed. Our second set of contributions lies in the construction of a scalable, superlinearly convergent method for solving this class of problems, under the setting of a finite sample-space. We present a novel hybrid algorithm that combines sequential quadratic programming (SQP) and Benders decomposition. In this framework, the resulting quadratic programming approximations while arbitrarily large, are observed to be two-period stochastic quadratic programs (QPs) and are solved through two variants of Benders decomposition. The first is based on an inexact-cut L-shaped method for stochastic quadratic programming while the second is a quadratic extension to a trust-region method suggested by Linderoth and Wright (Comput. Optim. Appl. 24:207–250, 2003). Obtaining Lagrange multiplier estimates in this framework poses a unique challenge and are shown to be cheaply obtainable through the solution of a single low-dimensional QP. Globalization of the method is achieved through a parallelizable linesearch procedure. Finally, the efficiency and scalability of the algorithm are demonstrated on a set of stochastic nonlinear programming test problems.  相似文献   

13.
We consider mixed-integer recourse (MIR) models with a single recourse constraint. We relate the second-stage value function of such problems to the expected simple integer recourse (SIR) shortage function. This allows to construct convex approximations for MIR problems by the same approach used for SIR models.  相似文献   

14.
We present a framework for solving large-scale multistage mixed 0–1 optimization problems under uncertainty in the coefficients of the objective function, the right-hand side vector, and the constraint matrix. A scenario tree-based scheme is used to represent the Deterministic Equivalent Model of the stochastic mixed 0–1 program with complete recourse. The constraints are modeled by a splitting variable representation via scenarios. So, a mixed 0–1 model for each scenario cluster is considered, plus the nonanticipativity constraints that equate the 0–1 and continuous so-called common variables from the same group of scenarios in each stage. Given the high dimensions of the stochastic instances in the real world, it is not realistic to obtain the optimal solution for the problem. Instead we use the so-called Fix-and-Relax Coordination (FRC) algorithm to exploit the characteristics of the nonanticipativity constraints of the stochastic model. A mixture of the FRC approach and the Lagrangian Substitution and Decomposition schemes is proposed for satisfying, both, the integrality constraints for the 0–1 variables and the nonanticipativity constraints. This invited paper is discussed in the comments available at: doi:, doi:, doi:, doi:.  相似文献   

15.
This paper deals with stochastic programming problems where the probability distribution is not explicitly known. We suppose that the probability distribution is defined by crisp or fuzzy inequalities on the probability of the different states of nature. We formulate the problem and present a solution strategy that uses the α-cut technique in order to transform our problem into a stochastic program with linear partial information on probability distribution (SPI). The obtained SPI problem is than solved using two approaches, namely, a chance constrained approach and a recourse approach. For the recourse approach, a modified L-shaped algorithm is designed and illustrated by an example.  相似文献   

16.
Stochastic programming approaches to stochastic scheduling   总被引:3,自引:0,他引:3  
Practical scheduling problems typically require decisions without full information about the outcomes of those decisions. Yields, resource availability, performance, demand, costs, and revenues may all vary. Incorporating these quantities into stochastic scheduling models often produces diffculties in analysis that may be addressed in a variety of ways. In this paper, we present results based on stochastic programming approaches to the hierarchy of decisions in typical stochastic scheduling situations. Our unifying framework allows us to treat all aspects of a decision in a similar framework. We show how views from different levels enable approximations that can overcome nonconvexities and duality gaps that appear in deterministic formulations. In particular, we show that the stochastic program structure leads to a vanishing Lagrangian duality gap in stochastic integer programs as the number of scenarios increases.This author's work was supported in part by the National Science Foundation under Grants ECS 88-15101, ECS 92-16819, and SES 92-11937.This author's work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant A-5489 and by the UK Engineering and Physical Sciences Research Council under Grants J90855 and K17897.  相似文献   

17.
This paper is dedicated to a study of different extensions of the classical knapsack problem to the case when different elements of the problem formulation are subject to a degree of uncertainty described by random variables. This brings the knapsack problem into the realm of stochastic programming. Two different model formulations are proposed, based on the introduction of probability constraints. The first one is a static quadratic knapsack with a probability constraint on the capacity of the knapsack. The second one is a two-stage quadratic knapsack model, with recourse, where we introduce a probability constraint on the capacity of the knapsack in the second stage. As far as we know, this is the first time such a constraint has been used in a two-stage model. The solution techniques are based on the semidefinite relaxations. This allows for solving large instances, for which exact methods cannot be used. Numerical experiments on a set of randomly generated instances are discussed below.  相似文献   

18.
We consider an optimization problem in which some uncertain parameters are replaced by random variables. The minimax approach to stochastic programming concerns the problem of minimizing the worst expected value of the objective function with respect to the set of probability measures that are consistent with the available information on the random data. Only very few practicable solution procedures have been proposed for this problem and the existing ones rely on simplifying assumptions. In this paper, we establish a number of stability results for the minimax stochastic program, justifying in particular the approach of restricting attention to probability measures with support in some known finite set. Following this approach, we elaborate solution procedures for the minimax problem in the setting of two-stage stochastic recourse models, considering the linear recourse case as well as the integer recourse case. Since the solution procedures are modifications of well-known algorithms, their efficacy is immediate from the computational testing of these procedures and we do not report results of any computational experiments.  相似文献   

19.
We study the optimal resource portfolio of a firm that sells two vertically differentiated products and utilizes resource flexibility and responsive pricing. We model this decision problem as a two-stage stochastic programming problem with recourse: In the first stage, the firm determines its resource mix and capacities so as to maximize the expected profit under demand uncertainty; in the second stage, uncertainty is resolved and the firm determines its production and pricing decision, constrained by its investment decision. We show that the objective function of this decision problem is not well-behaved (ie, it may have multiple local maxima). Using the concept of Pareto dominance, we reduce the feasible investment region, without loss of optimality, to one in which the objective function is well-behaved everywhere. This reduction allows us to derive the necessary and sufficient conditions for the optimal capacity decision and to gain insights.  相似文献   

20.
Abstract

In this paper, we apply the parametric linear programing technique and pseudo metrics to study the quantitative stability of the two-stage stochastic linear programing problem with full random recourse. Under the simultaneous perturbation of the cost vector, coefficient matrix, and right-hand side vector, we first establish the locally Lipschitz continuity of the optimal value function and the boundedness of optimal solutions of parametric linear programs. On the basis of these results, we deduce the locally Lipschitz continuity and the upper bound estimation of the objective function of the two-stage stochastic linear programing problem with full random recourse. Then by adopting different pseudo metrics, we obtain the quantitative stability results of two-stage stochastic linear programs with full random recourse which improve the current results under the partial randomness in the second stage problem. Finally, we apply these stability results to the empirical approximation of the two-stage stochastic programing model, and the rate of convergence is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号