首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a 2D electrophoretic separation procedure able to maintain the integrity of platinum-protein bonds has been developed. The method is based on the use of sequential OFFGEL isoelectric focussing (IEF) and PAGE. A systematic study of the reagents used for PAGE, for OFFGEL-IEF separation, and post-separation treatment of gels (such as enzymatic digestion and sample preparation for MS analysis) was tackled regarding their suitability for the identification of platinum binding proteins using standard proteins incubated with cisplatin. The distribution of platinum in high and low molecular weight fractions (separated by cut-off filters) was determined by ICP-MS, which allows evaluating platinum-protein bond stability under the conditions studied. SDS-PAGE in the absence of β-mercaptoethanol or dithiotreitol preserved the platinum-protein bonds. In addition, neither the influence of the electric field during the electrophoretic separation, nor the processes of fixing, staining and destaining of proteins in the gel did result in the loss of platinum from platinum binding proteins. SDS-PAGE under non-reducing conditions provides separation of platinum-binding proteins in very narrow bands with quantitative recoveries. Different amounts of platinum-bound proteins covering the range 0.3-2.0 μg were separated and mineralised for platinum determination, showing good platinum linearity. Limits of detection for a mixture of five standard proteins incubated with cisplatin were between the range of 2.4 and 13.9 pg of platinum, which were satisfactory for their application to biological samples. Regarding OFFGEL-IEF, a denaturing solution without thiourea and without dithiotreitol is recommended. The suitability of the OFFGEL-IEF for the separation of platinum binding proteins of a kidney cytosol was demonstrated.  相似文献   

2.
IEF protein binary separations were performed in a 12-μL drop suspended between two palladium electrodes, using pH gradients created by electrolysis of simple buffers at low voltages (1.5-5 V). The dynamics of pH gradient formation and protein separation were investigated by computer simulation and experimentally via digital video microscope imaging in the presence and absence of pH indicator solution. Albumin, ferritin, myoglobin, and cytochrome c were used as model proteins. A drop containing 2.4 μg of each protein was applied, electrophoresed, and allowed to evaporate until it splits to produce two fractions that were recovered by rinsing the electrodes with a few microliters of buffer. Analysis by gel electrophoresis revealed that anode and cathode fractions were depleted from high pI and low pI proteins, respectively, whereas proteins with intermediate pI values were recovered in both fractions. Comparable data were obtained with diluted bovine serum that was fortified with myoglobin and cytochrome c.  相似文献   

3.
Tan A  Pashkova A  Zang L  Foret F  Karger BL 《Electrophoresis》2002,23(20):3599-3607
A miniaturized multichamber device was constructed for solution isoelectric focusing (IEF) separation of complex peptide mixtures. The system, based on immobilized pH gels, consisted of 96 minichambers ( approximately 75 nuL each) arranged in eight rows. Neighboring chambers in a given row were separated by short glass tubes (4 mm inner diameter, 3 mm long), within which Immobiline gels of specific pH values were polymerized. During focusing, the device was sandwiched between two supporting blocks incorporating the reservoirs for anolyte and catholyte. In principle, multiple samples could be simultaneously fractionated, each separated into 12 fractions of various pI ranges. A variety of standard peptide mixtures and tryptic digests of proteins were separated by IEF using this device, and the fractions were characterized by mass spectrometry. For a codigested nine-protein mixture, both the total number of peptides identified and the average sequence coverage were similar to the results of ion-exchange chromatography (IEC), according to matrix assisted laser/desorption/ionization--time of flight (MALDI-TOF) data. The IEF separation provided concentrated and desalted fractions, suitable for an additional separation liquid chromatography, capillary electrophoresis (LC, CE) or mass spectrometry (MS) detection without additional sample cleanup. High loading capacity was achieved for the miniaturized multichamber IEF device. Importantly, a linear correlation was found between the experimentally determined and calculated pI values of peptides.  相似文献   

4.
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.  相似文献   

5.
The IsoPrime multicompartment electrolyzer, equipped with a series of isoelectric membranes with closely spaced pI values, was used for the first time for the preparative-scale separation of the enantiomers of dansyl phenylalanine with hydroxypropyl beta-cyclodextrin as resolving agent. The final separation conditions could be established easily in three successive experiments by rationally narrowing the pH steps between the neighboring isoelectric membranes. The final separation yielded products with an enantiomeric excess greater than 99.9%, at production rates of about 0.1 mg/h. The greatest experimental difficulty was caused by the relatively high salt content of the hydroxypropyl beta-cyclodextrin used, which resulted in high conductivity and limited the maximum field strength one could use.  相似文献   

6.
In the presence of methanol and n‐decanol as porogens, a partially filled capillary monolithic column was prepared by in situ reaction of glycidyl methacrylate and poly (ethylene glycol) diacrylate. Then, Pharmalyte 3–10 was immobilized on this column in order to obtain a capillary isoelectric focusing (cIEF) column with monolithic immobilized pH gradient (M‐IPG). In addition, an online self‐built platform for protein separation was established on account of the introduction of a cross‐shaped unit and two short‐off valves. In this platform, a cross‐shaped unit was not only used to join the M‐IPG column and a six‐way injection valve (1.5 μL sample loop), but also to supply a volume pool of anode buffer so that the process of injection, focusing and mobilization of samples could be sequentially performed. The short‐off valve in the tee unit or cross‐shaped unit could be used to control the direction of the fluid flow. Using this online cIEF platform and under the optimized conditions, 7‐proteins mixture could be separated and a good linear correlation between pI values and migration times was obtained by the M‐IPG column. Meanwhile, based on the online cIEF platform, human serum proteins and a mixture of Hb A and Hb A1c have been successfully resolved with the newly developed M‐IPG column.  相似文献   

7.
Free‐flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home‐made carrier ampholyte‐free FFIEF system was constructed via orientated migration of H+ and OH? provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte‐free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI‐TOF‐MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris‐acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.  相似文献   

8.
9.
An improved preparative method based on isoelectric focusing of analytes in a cellulose‐based separation medium is described in this study. Cellulose is suspended in an aqueous solution of simple buffers, ethylene glycol, glycerol, nonionic surfactant, and colored pI markers. Water partially evaporates during focusing run and the separation takes place in an in situ generated layer of cellulose, which has a gel‐like appearance at the end of analysis. Final positions of analytes are indicated by the positions of zones of focused pI markers. Fractions, segments of the separation medium with analytes, can be simply collected by spatula and analyzed by downstream analytical methods. Good focusing ability of the new method and almost quantitative recovery of model proteins, cytochrome c and bovine serum albumin, was verified by gel electrophoresis and capillary isoelectric focusing of the collected fractions.  相似文献   

10.
Liang Y  Zhu G  Wang T  Zhang X  Liang Z  Zhang L  Zhang Y 《Electrophoresis》2011,32(20):2911-2914
A new method was developed to prepare monolithic immobilized pH gradient (M-IPG) columns in UV-transparent fused-silica capillaries by the 5-min photopolymerization of acrylamide and N,N'-methylenebisacrylamide, followed by the 20-min photografting of the focused ampholine-derived glycidylmethacrylate monomer on the monolithic matrix, by which the preparation time was reduced, and the stability of the formed pH gradient was improved, compared with our previous methods. Using the prepared M-IPG column, the baseline separation of proteins was achieved according to their pIs. Without carrier ampholytes added in the running buffer, the separated components could be detected with high sensitivity by UV at low wavelength.  相似文献   

11.
In order to improve precision in protein analysis, a new rinsing procedure with 3M hydrochloric acid was investigated for linear polyacrylamide-coated capillaries used in isoelectric focusing. After each run the capillaries were rinsed with hydrochloric acid for 5 min, followed by water for 20 min (Deltap = 1030 mbar each). Myoglobin, beta-lactoglobulin, and ovalbumin were used as model proteins; the pH gradient was provided by Pharmalyte (pH 3-10). The resulting method was already successful in avoiding capillary blockages, even for long-series protein measurements. Further improvements in precision have been obtained by avoiding a complete standstill of liquid within the capillary when the separation system was idle. Pressure (Deltap = 300 mbar or more) and high voltage (30 kV) were therefore also applied during storage within a measurement series. The reproducibility of migration time and peak area are further improved with RSD% less than 10% in a long-term measurement (n = 86).  相似文献   

12.
Capillary isoelectric focusing (CIEF) separations are usually performed with neutral coated fused-silica capillaries in aqueous anticonvective media. Glycerol, a very viscous solvent (eta = 945 mPa x s at 25 degrees C), known to help stabilize any kind of proteins and solubilize hydrophobic ones, was tested as an alternative to using commercial gels. Viscosity and electroosmotic mobility were measured as a function of gel or glycerol content in water, and a 30:70 v/v glycerol-water medium appeared as a good compromise for performing CIEF in a bare fused-silica capillary without imposing too high a viscosity. To demonstrate the feasibility of this new CIEF system, a standard mixture of nine model proteins was separated according to their pI with a good agreement between experimental and literature aqueous pIs. Moreover, better resolution was achieved with this system than with the conventional aqueous CIEF system, as two of the model proteins could not be separated in the latter system. Glycerol-water CIEF in bare silica capillary was next applied to the separation of horse radish peroxidase, a complex mixture of protein isoforms. The good concordance with the separation obtained by the conventional CIEF system indicated the adequacy of this new system. Finally, as anticipated from the results obtained for the separation of bacteriorhodopsin, a membrane protein, glycerol-water CIEF performed in bare silica capillary appears to be a promising alternative to conventional aqueous CIEF for hydrophobic protein characterization, under their native form.  相似文献   

13.
We have elaborated a protocol for the fractionation of both hydrophilic and hydrophobic proteins using as a model the matrix and membrane compartments of highly purified rat liver peroxisomes because of their distinct proteomes and characteristic composition with a high quota of basic proteins. To keep highly hydrophobic proteins in solution, an urea/thiourea/detergent mixture, as used in traditional gel-based isoelectric focusing (IEF), was added to the electrophoresis buffer. Electrophoresis was conducted in the ProTeam free-flow electrophoresis (FFE) apparatus of TECAN separating proteins into 96 fractions on a pH 3-12 gradient. Consecutive sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that both matrix and the integral membrane proteins of peroxisomes could be successfully fractionated and then identified by mass spectrometry. This is documented by the detection of PMP22, which is the most hydrophobic and basic protein of the peroxisomal membrane with a pI > 10. The identification of 96 prominent spots corresponding to polypeptides with different physical and chemical properties, e.g., the most abundant integral membrane polypeptides of peroxisomes and specific ones of the mitochondrial and microsomal membrane, reflects the fractionation potential of free-flow (FF)-IEF, accentuating its value in proteomic research as an alternative perhaps superior to gel-based IEF.  相似文献   

14.
An apparatus and the procedure for cellulose acetate isoelectric focusing were refined and optimized for routine use in clinical laboratories. The space in the electrophoretic chamber was minimized to maintain high humidity during the run. The water content of the thin cellulose acetate membranes in the chamber was well controlled during isoelectric focusing and the effect of atmospheric carbon dioxide was also excluded. The temperature of the membranes was kept below 2 degrees C, even under conditions of high electric field strength for faster isoelectric focusing of high-molecular-weight proteins. No special training was required for technicians in clinical laboratories to obtain reproducible isoelectric profiles of human serum proteins.  相似文献   

15.
Das C  Fan ZH 《Electrophoresis》2006,27(18):3619-3626
This paper describes the investigation on the effects of separation length and voltage on IEF in a plastic microfluidic device. A LIF, whole-channel imaging detection (WCID) system was developed to monitor proteins while they were moving under an electric field. IEF was carried out in a separation medium consisting of carrier ampholytes and a mixture of linear polymers (hydroxyethylcellulose and hydroxypropylcellulose). We found that the IEF separation resolution is essentially independent of separation length when the same voltage is applied, which agrees with the theory. This result supports the notion that IEF in a microfabricated device leads to more rapid analysis without sacrificing the resolving power. A higher separation voltage also brought about more rapid analysis and superior separation resolution. IEF of two proteins (green fluorescence protein and R-phycoerythrin) was achieved in 1.5 min when 500 V was applied across a 1.9-cm channel. We found that a linear relationship exists between the focusing time and the inverse of the electrical field strength. In addition, we confirmed the phenomenon in which the pH gradient was compressed to the middle of a channel, and we found that the relative amount of the gradient compression decreased with the channel length.  相似文献   

16.
Lin  Fengmin  Yu  Shiyong  Gu  Le  Zhu  Xuetao  Wang  Jianshe  Zhu  Han  Lu  Yi  Wang  Yihua  Deng  Yulin  Geng  Lina 《Mikrochimica acta》2015,182(13):2321-2328

A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity.

An open-column layer-by-layer photo-immobilised pH gradient was introduced into two-dimensional chip electrophoresis with simplicity, reusability, improved separation performance and separation capacity.

  相似文献   

17.
18.
The non-availability of commercial carrier ampholytes in the pH range greater than 11 has contributed to difficulties in focusing and resolving highly basic proteins/peptides using capillary isoelectric focusing (cIEF). Two different approaches, involving the use of N,N,N',N'-tetramethylethylenediamine (TEMED) and ampholyte 9-11, are investigated for their effects on the extension of separation range in cIEF. The addition of TEMED into pharmalyte 3-10 not only prevents the peptides/proteins from focusing in sections of the capillary beyond the detection point, but also extends the separation range to at least isoelectric point (pI) 12. The combination of ampholyte 9-11 with pharmalyte 3-10 surprisingly provides baseline resolution between bradykinin (pI 12) and cytochrome c (pI 10.3). The sample mixture, containing bradykinin, the high-pI protein calibration kit (pI 5.2-10.3), and cytochrome c digest, is employed to demonstrate the cIEF separation of proteins and peptides over a wide pH range of 3.7-12.  相似文献   

19.
Isoelectric focusing in a polyacrylamide pH gradient gel is used to analyze the size distribution of gold nanoparticles synthesized by a chemical route with mercaptosuccinic acid as a ligand. The isoelectric point of the nanoparticles is shown to be size dependent, allowing fractionation by electrophoresis. Each fraction has a narrow size distribution with a standard deviation lower than 0.4 nm.  相似文献   

20.
A rapid, simple method is proposed here for the identification of the experimental conditions that lead to satisfactory preparative-scale isoelectric focusing enantiomer separations in continuous free-flow electrophoretic units. The method first calls for the use of a commercially available, full-column imaging capillary electrophoretic system to find the background electrolyte composition that generates the largest pI difference between the bands of the enantiomers. The method then calls for the finding of the minimum residence time that permits full development of the pH gradient across the separation chamber of the continuous free-flow electrophoretic unit by measuring the pH in the sample-free carrier electrolyte fractions collected during these runs. Finally, the quality of the predicted preparative-scale separation is verified by analyzing the enantiomer-containing collected fractions by capillary electrophoresis using a 14-sulfated, single-isomer cyclodextrin as resolving agent. The pI difference values and production rate values observed in this work agree well with the literature values that were obtained by much more time-consuming methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号