首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文以聚酰胺-胺(PAMAM)树形分子为模板,原位制备AgI纳米簇.系统地研究了AgI纳米簇制备过程中各种反应条件如树形分子端基、反应时间、Ag+与PAMAM摩尔比等对AgI纳米簇粒径的影响,分别用紫外-可见光谱、荧光光谱、透射电镜等对所制备的纳米簇进行表征.在相同的条件下,以G4.5-COOH3为模板较以G5.0-NH2为模板制备的AgI纳米簇粒径小、分布均匀,这主要取决于G4.5-COOCH3PAMAM树形分子所起的“内模板”作用.G4.5-COOH3树形分子浓度为1×10-5mol/L,Ag+与树形分子摩尔比为30:1时所制备的AgI纳米簇的粒径分布均匀、稳定性好,室温避光可稳定存在两个月以上.  相似文献   

2.
The interaction of avidin with biotin on a functional Au surface containing fourth generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers was investigated through the use of Fourier transform infrared reflection–adsorption spectroscopy (FT-IRRAS). The first step in the fabrication of the functional surfaces used was the construction of an aldehyde-terminated self-assembled monolayer (SAM) through the treatment of Au-coated glass slides with ethanol solutions of self-synthesized 2-hydroxypentamethylene sulfide (HPMS). The as-formed aldehyde-terminated monolayer was subsequently immersed in methanol solutions of G4-NH2 PAMAM dendrimer to obtain well-organized primary amine-terminated surfaces. Biotinylation of the amine-terminated layers thus obtained was accomplished by use of the N-succinimidyl ester of biotin. Each step of the synthetic process, as well as the performance of final surface for protein recognition was monitored by FT-IRRAS. In particular, the molecular recognition ability was examined and quantified by use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. Non-specific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated G4-NH2 PAMAM dendrimer layers formed according to this procedure have a high capacity for binding avidin with relatively high specificity. The performance of these layers (i.e. both binding capacity and specificity) improve substantially when 6-mercapto-1-hexanol (MH) is present as a co-adsorbent during the formation of the initial aldehyde-terminated layers. This effect can be attributed to the dilution of the initial aldehyde-terminated SAM, leading to a more favorable spatial arrangement of the subsequent biotinylated surfaces.  相似文献   

3.
CdS半导体纳米簇具有独特的光、电性能, 如何制备均匀分散的、能够稳定存在的CdS纳米簇是目前的研究热点之一. 以聚酰胺-胺(PAMAM)树形分子为模板, 原位合成了CdS纳米簇. 首先用UV-Vis分光光度法研究了与树形分子的配位机理, 得出G4.5和G5.0的平均饱和配位数分别为16和34, 并发现在G4.5PAMAM树形分子中Cd2+主要与最外层叔胺基配位, 在G5.0PAMAM树形分子中Cd2+主要与最外层伯胺基配位. 酯端基的G4.5的模板作用要明显优于胺端基的G5.0. 通过改变Cd2+与G4.5树形分子的摩尔比可以得到不同粒径的CdS纳米簇. 溶液的pH值对CdS纳米簇影响很大, pH在7.0左右制备的CdS纳米簇粒径小而均匀, 且溶液稳定性高. 用UV-Vis分光光度计和TEM对CdS纳米簇的大小和形貌进行了表征. 结果表明TEM观测CdS纳米簇的粒径要大于用Brus公式的估算值.  相似文献   

4.
Protein-resistant films derived from the fifth-generation poly(amidoamine) dendrimers (PAMAM G5) functionalized with oligo(ethylene glycol) (OEG) derivatives consisting of various ethylene glycol units (EG(n), n = 3, 4, and 6) were prepared on the self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid (MUA) on gold substrates. The resulting films were characterized by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy (XPS). About 35% of the peripheral amines of the dendrimers were reacted with N-hydroxysuccinimide-terminated EG(n) derivatives (NHS-EG(n)). The dendrimer films showed improved stability over octadecanethiolate SAMs on gold in hot solvents, attributed to the formation of multiple amide bonds per PAMAM unit with underlying NHS-activated MUA monolayer. The EG(n)-attached PAMAM surfaces with n = 3 reduced the adsorption of fibrinogen to approximately 20% monolayer, whereas 2-3% for n = 4 or 6. The dendrimer films with various densities of EG(n) molecules on PAMAM surfaces were prepared by immersion of the NHS-terminated MUA-functionalized gold substrates in ethanolic solutions containing PAMAM and NHS-EG(n) of various mole ratios. The density (r) of the EG(n) molecules on the PAMAM surfaces is consistent with the mole ratio (r') of NHS-EG(n)/free amine of PAMAM in solutions. The resistance to protein adsorption of the resulting surfaces is correlated with the surface density and the length of the EG chains. At their respective r, the EG(n)-modified dendrimer films resisted approximately 95% adsorption of fibrinogen on gold surfaces. Finally, the specific binding of avidin to the approximately 5% and approximately 40% biotinylated EG3 dendrimers (surface density of biotin with respect to the total number of terminal amino groups on PAMAM G5) gave rise to about 50% and 100% surface coverage by avidin, respectively.  相似文献   

5.
树状大分子PAMAM(1G)-FCD的合成及荧光性能   总被引:2,自引:1,他引:1  
合成了外围由小分子2-芴醛修饰的树状大分子PAMAM(1G)-FCD, 用IR, 1H NMR, MALDI-TOF-MS等手段表征了其结构, 并对其荧光性能及Sn2+对该性能的影响进行了研究, 结果表明, Sn2+能使化合物荧光显著增强. 紫外光谱表明, 随着PAMAM(1G)-FCD溶液中Sn2+浓度的增加, 体系在360 nm处出现了新的吸收峰, 表明二者之间存在化学反应. 故该树状分子有望作为难得的蓝光区荧光材料及金属-树状大分子杂化材料.  相似文献   

6.
The interaction of avidin with biotin was studied on functionalized quartz surfaces terminated with 3-aminopropyltrimethoxysilane (3-APTMS), 2,2'-(ethylenedioxy)bis(ethylenediamine) (DADOO), and fourth-generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers with the use of Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). In particular, the molecular recognition ability of these surfaces was quantified through FT-IRRAS in combination with the use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. The degree of nonspecific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated 3-APTMS layer exhibits a very low specific binding capacity for avidin (on the order of 0.15 pmol of avidin/cm2) and substantial nonspecific adsorption. Both the binding capacity and the specificity were greatly improved when the 3-APTMS layer on quartz was modified through serial chemisorption of glutaraldehyde (GA), DADOO, and/or G4-NH2 PAMAM dendrimer layers. Among these layers, the biotinylated G4-NH2 PAMAM dendrimer layer exhibited the highest capacity for avidin binding (2.02 pmol of avidin/cm2) with a specificity of approximately 90%. This effect can be attributed to the efficient packing/ordering of the binding dendrimer layer, leading to a more dense and better organized layer of biotin headgroups on the subsequent biotinylated surface.  相似文献   

7.
Scanning force microscopy (AFM) has been employed to characterize the generation‐9 (G9) poly(amidoamine) (PAMAM) dendrimer packing on a mica surface under various conditions. Well ordered 2‐D arrays from hexagonally packed particles of PAMAM (G9) dendrimers (11.4nm in diameter) were deposited on the mica surface. This may be one of the smallest regular monolayer arrays ever observed. The mechanism considered to be responsible for this 2‐D array packing is the interaction of forces between the dendrimer and the mica surface and between dendrimer molecules as well. Other factors such as molecular interpenetrating and the rigidity of the branch structure obviously play an important role in the 2‐D array formation.  相似文献   

8.
聚酰胺-胺型树枝状高分子PAMAM溶液的特性粘度   总被引:6,自引:0,他引:6  
测定了树枝状高分子PAMAM(聚酰胺-胺型,乙二胺为内核)及其季铵盐在水溶液中的特性粘度[η].结果表明,PAMAM的[η]在代数G=2~3处有最大值,而其季铵盐则在此处有最小值.同时发现高分子的流体力学等效圆球半径Rη随G增大近似线性增长.通过对PAMAM及其季铵盐特性粘度的研究,揭示了不同代数高分子结构形态的变化规律.  相似文献   

9.
Binding of Cd2+ by PAMAM 4.5 dendrimer was studied by equilibrium dialysis, isothermal titration calorimetry and zeta-potential measurement. The following binding parameters were obtained: n = 23.8 ± 9.5, Kb = 4.7 ± 0.9 × 103 in water; and n = 41.3 ± 13.4, Kb = 2.1 ± 0.8 × 103 in 0.15 mol/l phosphate-buffered saline. The location of the bound Cd2+ is discussed. The interactions between bovine serum albumin, PAMAM 4.5 dendrimer and cadmium were analyzed using fluorescence and equilibrium dialysis. The competition between Cd2+ binding to BSA and PAMAM 4.5 dendrimer was investigated. It is proposed that PAMAM 4.5 dendrimer could be successfully used for extracting Cd2+ from aqueous solutions (environmental protection).  相似文献   

10.
We report that a polyhedral oligomeric silsesquioxane (POSS) core can enhance the entrapping ability of dendrimers. Compared to the G2 PAMAM dendrimer, the G2 POSS-core dendrimer can entrap a larger amount of guest molecules without loss of affinity, and consequently, the water solubility of the entrapped guest molecules can be increased. In addition, we demonstrated that a fluorophore entrapped in the G2 POSS-core dendrimer was prevented from undergoing fluorescence photobleaching.  相似文献   

11.
The effect of polyamidoamine (PAMAM) dendrimers on activity and fluorescence of pure acetylcholinesterase (EC 3.1.1.7.) was studied. It has been shown that all dendrimers studied decreased the enzymatic activity of acetylcholinesterase. This effect depended on the type of dendrimers. The data on the intrinsic fluorescence have shown that the dendrimers changed acetylcholinesterase conformation and the strongest effect was induced by PAMAM G3.5 dendrimer.  相似文献   

12.
细胞膜仿生修饰树枝状聚酰胺-胺的研究   总被引:1,自引:1,他引:1  
贾兰  徐建平  计剑  沈家骢 《高分子学报》2008,(11):1108-1112
利用2-丙烯酰氧基乙基磷酸胆碱的双键与树枝状聚酰胺-胺表面的氨基进行Michael加成反应,实现树枝状聚酰胺-胺表面的磷酸胆碱仿生修饰,修饰过程用FTIR、1H-NMR进行了表征.体外细胞活性测定和细胞形貌观察证实磷酸胆碱仿生修饰有效地改善了聚酰胺-胺树枝状聚合物的生物相容性;修饰后的聚酰胺-胺树枝状聚合物表面剩余的氨基仍然可以有效的与DNA复合,有可能作为一种潜在的基因载体得到广泛应用.  相似文献   

13.
Interaction forces between two gold surfaces with adsorbed poly(amidoamine) (PAMAM) dendrimers (generations G3.0 and G5.0) have been investigated using colloidal probe atomic force microscopy (AFM). In the absence of dendrimers or at their low concentrations, an attractive force derived from the van der Waals interaction was observed. On the other hand, this attractive interaction changed to repulsion with increasing dendrimer concentration. The origin of the repulsion can be attributed to either an electric double layer interaction or a steric effect of the adsorbed dendrimers, depending on the concentration of dendrimer. The steric hindrance was also influenced by the generation of the dendrimer; the force-detectable distance in the presence of PAMAM G5.0 dendrimer was slightly longer than that in the presence of G3.0 dendrimer. In order to estimate the occupied area of each dendrimer adsorbed on gold, quartz crystal microbalance (QCM) measurement was also carried out.  相似文献   

14.
PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5 nm in diameter were prepared using H2 as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.  相似文献   

15.
Dendrimers are a new class of nanotechnological polymers suitable for drug targeting, microarray systems or detoxication. The present study is devoted to a detailed analysis of binding between PAMAM dendrimers and bovine serum albumin (fatty acid free or loaded with oleic, linoleic, oleic+linoleic or oleic+linoleic+arachodonic acids) by measuring zeta-potential, fluorescence quenching, fluorescence anisotropy and electron paramagnetic resonance. Addition of PAMAM G2 and G6 dendrimers to protein solutions resulted in attachment to the protein molecule. The PAMAM dendrimers also competed with BSA for fatty acids if two or three fatty acids were loaded per protein. This can lead to the extraction of fatty acids from BSA to the PAMAM dendrimer.  相似文献   

16.
The synthesis of a generation 5 (G5) poly(amidoamine) (PAMAM) dendrimer platform having cyclooctyne ligands that were subsequently be used for a copper-free Huisgen 1,3-dipolar cycloaddition (click reaction) with azido modified methotrexate is described. The G5 PAMAM dendrimer was first partially (70%) acetylated and then coupled with 20 cyclooctyne ligands through amide bonds. The remaining primary amine groups on the dendrimer surface were neutralized by acetylation. The platform was then ‘clicked’ with different numbers (5, 10, and 17) of γ-azido functionalized methotrexate. The copper-free click reactions were stoichiometric with excellent yields.  相似文献   

17.
研究了不同温度、浓度、pH值条件下,不同代数、不同端基类型(酯端基和胺端基)的PAMAM(聚酰胺-胺)树形分子的强荧光发射性能.PAMAM树形分子发射强荧光是沿树形结构方向的酰胺基团中的n→π*跃迁和其密实的球状结构共同作用的结果.树形分子的荧光强度在低pH值或者低温条件下大幅度提高,并且在稀溶液中与浓度成线性关系,在高浓度或者高代数条件下逐渐偏离线性关系.本文还对上述规律的内在机理进行了研究:第一,低pH值条件下,PAMAM树形分子内的叔胺基被氢离子质子化,酰胺荧光发射中心和叔胺基团之间的光诱导电子转移作用被抑制,甚至中断,因此荧光强度急剧升高;第二,随着温度升高,PAMAM树形分子的去活作用增强,荧光强度降低;第三,浓度超过临界点浓度后,由于浓度消光作用,PAMAM树形分子的荧光强度不再随浓度增加而线性增强.最后,将PAMAM树形分子水溶液用于锡纸上油印潜指纹的识别,经处理后的指纹在365 nm紫外光的激发下发射出蓝色荧光,潜指纹被成功地清晰识别.  相似文献   

18.
The incorporation of morphine (MOR) into the nanoparticle structure is a viable alternative to traditional enzyme usage. It has good biological potential to separate MOR from real urine samples. In this study, a new method of MOR identification in real urine samples was synthesized using the β-glucuronidase-dendrimer poly amidoamine (PAMAM) enzyme hybrid system. Replacing MOR in dendrimer cavities significantly reduces enzyme consumption. The replacement technique is done in dendrimer cavities in two stages as an alternative to β-glucuronidase enzyme and even MOR. In this paper, firstly, PAMAM dendrimer G2 was synthesized based on silica. The β-glucuronidase enzyme was replaced inside its dendrimer cavities and the compound was released into a real urine sample containing MOR. The enzyme was extracted from dendrimer cavities. The MOR- β-glucuronidase enzyme bond broke. In the next stage of the process, free MOR entered the PAMAM dendrimer G2 cavities. MOR was detected in real urine samples.  相似文献   

19.
Poly(vinyl alcohol) (PVA) and polyamidoamine (PAMAM) dendrimers are water-soluble, biocompatible and biodegradable polymers, which have been widely applied in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of PVA and amine-terminated PAMAM dendrimer G6-NH(2) were prepared by cyclic freezing/thawing treatment of aqueous solutions containing PVA and G6-NH(2). The FT-IR analysis and elemental analysis indicated that PAMAM dendrimer G6-NH(2) was successfully introduced into the formed hydrogels, possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups in PVA and PAMAM dendrimer in the process of freezing-thawing cycle. Compared with physically cross-linked PVA hydrogel, PVA/G6-NH(2) hydrogels show higher swelling ratios and faster re-swelling rate due to the higher hydrophilicity of PAMAM dendrimer G6-NH(2). Higher contents of G6-NH(2) in PVA/G6-NH(2) hydrogels resulted in higher swelling ratios and faster re-swelling rates. With increasing freezing/thawing cyclic times, the swelling ratios and re-swelling rates of PVA/G6-NH(2) hydrogels decreased, which is similar to that of physically cross-linked PVA hydrogel. Combining the special host property of polyamidoamine dendrimer, these novel physically cross-linked hydrogels are expected to have potential use in drug delivery, including improving drug-loading amounts in hydrogels and prolonging drug release time. Swelling ratios of physically cross-linked PVA/G6-NH(2)-50 hydrogels prepared by three, six, nine freezing/thawing cycles. The swelling equilibrium experiments were carried out in distilled water at 25 degrees C.  相似文献   

20.
Adsorption of poly(amidoamine) generation 3 (PAMAM G3) dendrimer with surface amino groups or PAMAM G0 dendrimer with quaternary ammonium groups (C8qbG0) onto glass has been studied by colloidal probe atomic force microscopy. The adlayer-adlayer interactions for these adsorbates are quite different despite the fact that they are almost equal in the hydrodynamic radius. In aqueous PAMAM G3 dendrimer solutions the electrostatic repulsion is predominant. The conformation of the adsorbed layer is flat and the protrusion of the individual dendrimers is negligible. On the other hand, C8qbG0 behaves as a surfactant and the layered structure of C8qbG0 is expected to be a patchy bilayer. Dispersion stability of silica suspensions with the adsorption of these dendrimers can be correlated with the force data obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号