首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships on discontinuities in magnetizing perfectly conducting media in a magnetic field are investigated. The magnetic permeabilities before and after the discontinuity are assumed to be constant, but unequal, quantities. It is shown that shocks of two kinds, fast and slow, are possible in the formulation under consideration in the hydrodynamics of magnetizing media, as in magnetic hydrodynamics: It is shown that the entropy decreases on the rarefaction shocks diminishing the magnetic permeability, but can grow on the rarefaction shocks increasing the magnetic permeability, but such waves are not evolutionary. The relationships on discontinuities in the mechanics of a continuous medium are written down in general form in [1] with the electromagnetic field, polarization, and magnetization effects taken into account. Relationships on discontinuities in the ferrohydrodynamic and elec trohydrodynamic approximations were written down in [2] and [3–5], respectively, for the cases when the magnetic permeability and dielectric permittivity of the medium ahead of and behind the discontinuity are arbitrary functions of their arguments and are identical. A system of relationships on discontinuities propagated into a magnetizing perfectly conducting medium is investigated in this paper. The method proposed in [6] is used in the investigation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 104–110, January–February, 1976.We are grateful to A. A. Barmin for discussing the paper and for valuable remarks.  相似文献   

2.
The authors consider the problem of supersonic unsteady flow of an inviscid stream containing shock waves round blunt shaped bodies. Various approaches are possible for solving this problem. The parameters in the shock layer on the axis of symmetry have been determined in [1, 2] by using one-dimensional theory. The authors of [3, 4] studied shock wave diffraction on a moving end plane and wedge, respectively, by the through calculation method. This method for studying flow around a wedge with attached shock was also used in [5]. But that study, unlike [4], used self-similar variables, and so was able to obtain a clearer picture of the interaction. The present study gives results of research into the diffraction of a plane shock wave on a body in supersonic motion with the separation of a bow shock. The solution to the problem was based on the grid characteristic method [6], which has been used successfully to solve steady and unsteady problems [7–10]. However a modification of the method was developed in order to improve the calculation of flows with internal discontinuities; this consisted of adopting the velocity of sound and entropy in place of enthalpy and pressure as the unknown thermodynamic parameters. Numerical calculations have shown how effective this procedure is in solving the present problem. The results are given for flow round bodies with spherical and flat (end plane) ends for various different values of the velocities of the bodies and the shock waves intersected by them. The collision and overtaking interactions are considered, and there is a comparison with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–147, September–October, 1984.  相似文献   

3.
Supersonic two-phase flow around bodies is encountered in calculating the flow around the last stages of blades of condensing turbines, in studying the motion of airplanes under cloudy conditions, etc. In the latter case, there is, along with erosion of the forward edges of the wing profiles, a change in the wave structure and interference situation in the flow about the airplane, leading to off-design regimes of motion. Supersonic flow of a two-phase mixture around a wedge, without taking account of the influence of the particles on the flow, was investigated in [1–3]. In [4], also in this kind of simplified setting, a study was made of the interaction of particles with the surface of a wedge in which reflection of the particles from the wall was taken into account. Morganthaler [5] made an experimental study of the flow of a mixture of air and aluminum oxide particles around a wedge. In [6] a theoretical study was made of a supersonic two-phase flow around thin flat axially-symmetric bodies. In particular, for the flow around a wedge, closed form solutions were obtained for the form of the shock wave, the gas streamlines and particle paths, and the distribution of all the parameters along the surface of the wedge. On the basis of the equations given in [7] and the method of characteristics, which were developed for flows consisting of a mixture of a gas and heterogeneous particles in nozzles [8,9], we present below a study of a supersonic two-phase flow around a wedge.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 83–88, March–April, 1972.  相似文献   

4.
Experimental investigations [1] show that when allowance is made for the real properties of a gas it is possible to have a regime of regular reflection of a shock wave from the surface of a wedge in which the reflected shock wave is attached to the tip of the wedge. In the present paper, which uses perturbation theory in a form close to a modified small-parameter method [2], an approximate analytic solution is constructed to the problem of the interaction of a strong shock wave with the surface of a wedge for such a regime. In contrast to the problem considered by the same authors in an earlier paper [3], the half-angle at the tip of the wedge is not assumed to be small.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 92–96, March–April, 1983.  相似文献   

5.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

6.
The drag of a flat wedge in a subsonic two-phase flow is investigated. In contrast to earlier work of Balanin and Zlobin [1] particular attention is devoted to the influence of the particle size. Detailed investigations are made of the dependences of the forces and aerodynamic coefficients on the concentration of the solid phase, the opening angle of the wedge, and the particle size. It is established that the drag coefficients depend on the particle size only for particles with diameters less than 30 um.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 177–180, March–April, 1982.  相似文献   

7.
Some peculiarities of the processes of regular and Mach reflection at constant adiabatic index =cp/cv=1.4 were investigated theoretically in [1]. It was demonstrated that increase in incident-wave intensity above some value leads to the appearance of an internal compression discontinuity (Fig. 1) and a break in the reflected wave (at point h), both of which had been observed previously only in experiment [2–4]. In the present study the method described in [1] is used to study the influence of adiabatic index on these peculiarities of the Mach reflection process which lead to a significant increase in pressure (to a maximum value Pm) on the surface wedge in the vicinity of point i. Pressure and density curves along the wedge surface are presented. It is found that increase in leads to the same qualitative changes in the pressure and density curves on the surface as are observed upon increase in semiaperture angle of the wedge or upon decrease in Mach number Mf of the shock-wave front incident on the wedge ab. These similarities in the shock-wave reflection process were first noted in [5] for weak shock waves in which the internal compression discontinuity does not appear.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 8, pp. 90–94, May–June, 1976.The author thanks O. S. Ryzhov for the many valuable remarks offered in his evaluation of the study.  相似文献   

8.
Liquid metal, which is a conductor of electric current, may be used as a lubricant at high temperatures. In recent years considerable attention has been devoted to various problems on the motion of an electrically conducting liquid lubricant in magnetic and electric fields (magnetohydrodynamic theory of lubrication), Thus, for example, references [1–3] study the flow of a conducting lubricating fluid between two plane walls located in a magnetic field. An electrically conducting lubricating layer in a magnetohydrodynamic bearing with cylindrical surfaces is considered in [4–8] and elsewhere.The present work is concerned with the solution of the plane magnetohydrodynamic problem on the pressure distribution of a viscous eletrically conducting liquid in the lubricating layer of a cylindrical bearing along whose axis there is directed a constant magnetic field, while a potential difference from an external source is applied between the journal and the bearing. The radial gap in the bearing is not assumed small, and the problem reduces to two-dimensional system of magnetohydrodynamic equations.An expression is obtained for the additional pressure in the lubricating layer resulting from the electromagnetic forces. In the particular case of a very thin layer the result reported in [4–8] is obtained. SI units are used.  相似文献   

9.
A large number of investigations have been carried out to study the aerodynamic characteristics of grids and permeable plates completely covering a pipe section [1]. The theoretical bases of the external aerodynamics of permeable bodies are established in [2], where the concept of a uniformly permeable surface is introduced and the problem of flow past a permeable plate at a small angle of attack is solved. Papers [3, 4] are devoted to the solution of problems of a jet flow of ideal incompressible fluid past a permeable wedge and a plate. The flow past a wedge with a high degree of permeability at low subsonic velocities was investigated theoretically and experimentally in [5]. Papers [6, 7] are devoted to the experimental investigation of the aerodynamic characteristics of plates and disks at low subsonic velocities. The results of the experimental investigations of permeable bodies are given in [8]. In the present paper the aerodynamic characteristics of permeable disks positioned perpendicular to the direction of the oncoming flow are investigated experimentally in a wide range of variation of the perforation parameters and the subsonic free-stream flow velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 123–128, July–August, 1986.  相似文献   

10.
A study is made of the flow of subsonic or sonic jets over an infinite wedge when the stagnation streamline bifurcates at the tip of the wedge. This regime can be realized only for a definite (previously unknown) relationship between the geometrical parameters. The problem is solved in the hodograph plane by the numerical method of [1] developed for the problem of a profiled Laval nozzle. A solution to the asymmetric problem obtained in the hodograph plane can be realized physically only for a definite relationship between the boundary values for the flow function. This relationship (which generalizes Prandtl's well-known formula [2] derived for asymmetric flow of incompressible jets over a plate on the basis of the momentum theorem) is obtained by analyzing the asymptotic behavior of the solution near the stagnation point. Examples of calculations are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 137–141, March–April, 1980.  相似文献   

11.
The methods of the mechanics of continuous media [1] are used to consider the problem of electrization of dielectric liquids flowing in tubes [2–6]. According to modern ideas [2–6], there is always dissolved in such liquids a slight admixture of an electrolyte, whose molecules in such a dilute solution dissociate to a certain extent into positively and negatively charged ions. On the walls, oxidizing and reducing reactions take place, as a result of which the negative and positive ions, respectively, give up to the wall surplus electrons or take missing electrons from it. Thus, a positive (respectively, negative) total electric charge is induced in the liquid by the flow. We consider in this paper the electrization of a dielectric liquid in laminar flow in a circular cylindrical tube. We find the distribution of the electric charge in the liquid, the maximal electric current, and the dependence of the length over which the distribution of the electric charge in the tube is established on the tube radius, the Debye radius of the liquid, and the Péclet diffusion number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 41–47, November–December, 1979.We thank V. V. Gogosov for helpful comments made in a discussion of thwe work.  相似文献   

12.
In a number of papers [1–7] carried out on various pulsed electromagnetic accelerators the appearance of a lamellar structure in the stream of accelerated ionized gas occurs having an oscillation frequency of several megahertz. The majority of authors relate the development of irregularities in the stream with local peculiarities in the flow of electric currents (secondary breakdowns [6], the formation of micropinches [3–5], the motion of a current spiral [2], etc.). Notwithstanding the generality of many properties of the irregularities recorded under various conditions, no unified point of view exists as yet concerning the nature of their development.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 143–149, July–August, 1970.  相似文献   

13.
The variation principle is applied for defining a crack in the solid body. The methods proposed in [G. Sih, C. Chen, Non-self-similar crack growth in elastic–plastic finite thickness plate, Theoretical and Applied Fracture Mechanics 3 (1985) 125–139] extend to presence of electromagnetic fields in material. Crack propagation in non-homogeneous media has been considered. It is shown that electromagnetic fields in the material are essentially affecting the trajectory. The crack trajectory stability has been studied as function of fracture energy, phase portraits of the trajectory in different media have been built, and various attractor types have been revealed. Different crack morphologies from single straight and oscillating crack propagation to straight double crack propagation were theoretically founded. In compliance with the experimental data of [R. Niefanger, V.-B. Pham, G. Schneider, H.-A. Bahr, H. Balke, U. Bahr, Quasi-static straight and oscillatory crack propagation in ferroelectric ceramics due to moving electric field: experiments and theory, Acta Materialia 52 (1) (2004) 117–127], it has been demonstrated that periodic electromagnetic field results in trajectory stochastization. This can be used for switching the crack over from the mode of mainline propagation into the mode of development of the field of diffused microcracks.  相似文献   

14.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

15.
Difficulties in determining experimentally the local electrical parameters of unipolar-charged jets are arousing interest in the theoretical investigation of electrogasdynamic (EGD) flows. Free EGD jets were examined, for example, in [1–3]. In order to control the charge on the dielectric parts of aircraft surfaces, which results from their static electrification and may have certain negative consequences [4], and, moreover, to influence the flow in the boundary layer use is being made of unipolar-charged jets propagating near the dielectric [5, 6]. In [6] the case of an ion jet near a dielectric surface possessing surface conductivity was investigated. In these circumstances it is possible to neglect charge diffusion, which considerably simplifies the problem. Space charge diffusion was taken into account in [7], but subject to certain very important simplifications. The author has calculated the electrical parameters of a unipolar-charged jet propagating in a viscous incompressible gas near an ideal dielectric plate, with allowance for surface and polarization charges and, moreover, the diffusion processes near the surface. An asymptotic solution is obtained for the equations of the ionic diffusion layer as the ratio of the thickness of the diffusion layer to the thickness of the hydrodynamic boundary layer tends to zero.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 174–180, September–October, 1984.The author is grateful to V. V. Mikhailov and A. V. Kazakov for valuable advice and comments.  相似文献   

16.
Certain self-similar problems involving the sudden motion of a wedge which were treated in the linear approximation in [1–3] are studied by the method of matched asymptotic expansions. The nature of the wave boundary of the perturbed region is determined. Second-approximation solutions are constructed which describe flows behind weak shock fronts propagating in a stationary gas and behind fronts of weak discontinuity lines propagating by known uniform flows. A boundary-value problem is formulated whose solution describes, in first approximation, flows in the neighborhoods of points of interaction of the fronts. The existence of similarity rules of flows in these nieghborhoods is estimated. An approximate solution of the problems is given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 37–47, May–June, 1976.  相似文献   

17.
The Richards equation is widely used as a model for the flow of water in unsaturated soils. For modelling one-dimensional flow in a homogeneous soil, this equation can be cast in the form of a specific nonlinear partial differential equation with a time derivative and one spatial derivative. This paper is a survey of recent progress in the pure mathematical analysis of this last equation. The emphasis is on the interpretation of the results of the analysis. These are explained in terms of the qualitative behaviour of the flow of water in an unsaturated soil which is described by the Richards equation.Nomenclature a coefficient in second-order diffusion term of equation - b coefficient in first-order advection term of equation - D soil-moisture diffusivity [L2T-1] - h pressure head [L] - H quarter-plane domain for Cauchy-Dirichlet problem [L] x [T] - K hydraulic conductivity scalar [LT–1] - K hydraulic conductivity tensor [LT–1] - q soil-moisture flux scalar [LT–1] - q soil-moisture flux vector [LT–1] - r dummy variable - R rectangle [L] x [T] - s dummy variable - s* representative value of dummy variable - S half-plane domain for Cauchy problem [L] x [T] - t time [T] - u unknown solution of partial differential equation - u0 initial-value function - v soil-moisture velocity scalar [LT–1] - v soil-moisture velocity vector [LT–1]  相似文献   

18.
The papers [1–5] are devoted to an investigation of aspects of the hydrodynamic interaction of cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoretically in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evolution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and finite [4] density are computed; results of an experimental investigation of the dynamic reactions of the flow on two mutually moving cascades of thin profiles are presented in [5]. The interference between two cascades of thin profiles in an inviscid, incompressible fluid flow is examined in this paper, where a modified method from [6] is used.Translated from Zhurnal Prikladnoi MekhaniM i Tekhnicheskoi Fiziki, No. 4, pp. 61–65, July–August, 1976.The author is grateful to D. H. Gorelov for discussing the research.  相似文献   

19.
A solution is given to the plane problem of the flow of a conducting gas across a homogeneous magnetic field in a magnetogasdynamic channel taking account of the Hall effect at small magnetic Reynolds numbers. The channel is formed by two long electrodes, and the cross section of the channel varies slightly and periodically along the gas flow. It is assumed that the electromagnetic forces are small. It is shown that the current distribution in the channel is nonuniform to a consider able degree and that inverse currents can form at the electrodes, with both subsonic and supersonic flows of the conducting gas. Transverse motion of the gas, due to a change in the cross section of the channel, leads to an increase of Joule energy losses. In [1] the current distribution was obtained in a flat channel formed by infinite dielectric walls, with the flow of a steady-state stream of plasma through the channel across a homogeneous magnetic field. With interaction between the flow and the magnetic field, closed current loops develop in the channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 26–33, November–December, 1970.  相似文献   

20.
A solution is found to the problem of symmetric cavitation flow over a wedge by an ideal incompressible fluid (in accordance with Efros's scheme [1]) in the presence of a point source in the flow or on the wedge. Expressions are obtained for the forces exerted on the source and the wedge by the fluid, the conditions under which there is a negative resistance (thrust) are indicated, and the profiles of the free streamlines are constructed for different values of the flow parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Shidkosti i Gaza, No. 6, pp. 137–141, November–December, 1979.We thank L. I. Sedov for his interest in the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号