首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a study of the transient behavior of structural dynamics and the associated innovatory microscopic spallation mechanism at the solid-state interface, induced by an incident femtosecond pulse laser. By detailed structural dynamic analysis, using the technique of molecular dynamics simulation, the spallation mechanism at the solid–solid interface is observed. The occurrence of structural spallation is mainly characterized by extraordinary expansion dynamics and tensile stress that induces interior structural void defect coalescence, eventually leading to cracking. The microscopic phenomenon of moderate ductile fracturing at the solid–solid interface is identified. A high strain rate in the order of 109 s-1 is observed. Both aforementioned phenomena are analogous to the experimental results of metal-film spallation excited by a pulse laser. Moreover, it is also shown that the critical value of the stain rate is one of the dominant factors that influences the occurrence and mechanism of structural spallation. The results of simulations reveal that the thin-film structure is safe if the strain rate is below certain critical values. The critical damage threshold is evaluated and technical suggestions to avoid interfacial fracture are also presented. PACS 02.70.Ns; 42.62.-b; 64.60.Ht; 61.72.Cc; 64.60.-i  相似文献   

2.
3.
Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL∼40-100 fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50 nm for Al and 100 nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=60{65} mJ/cm2and spallation Fs=120{190} mJ/cm2, where numbers in brackets { } show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×109 1/s at spallation threshold. Simulated spall strength of Al is 7.4{8.7} GPa, that is noticeably less than 10.3{14} GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120 mJ/cm2 and crater depth of 110 nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.  相似文献   

4.
Thermodynamic behaviors and interactions between bubble pairs are important to better understand the cavitation phenomena. In this study, a compressible two-phase model, accounting for thermal effects to investigate the thermodynamic behaviors and interactions between bubble pairs, is developed in OpenFOAM. The volume of fluid (VOF) method is adopted to capture the interface. Validations are performed by comparing the simulation results of a single bubble and bubble pairs with corresponding experimental data. The dynamical behaviors of bubble pairs and their thermodynamic effect at different relative distances γ are investigated and discussed, which help reveal the bubble cloud dynamics. The quantitative analysis of γ effects on the maximum temperature during bubble collapse is performed with three distinct stages identified. For a single bubble collapsing near the rigid surface, the thermodynamic characteristics at different relative distances are similar to that of the bubble pairs, but the maximum temperature is higher since the single bubble can collapse to a smaller volume.  相似文献   

5.
Laser damage behaviors of thin-film beam splitters for third harmonic separation were investigated under the simultaneous exposure of fundamental frequency (1ω) and the third harmonics laser beam (3ω). The samples were prepared by conventional e-beam evaporation, and the surface laser-induced damage thresholds (LIDT) of the samples were obtained for the irradiations of 3ω only and 3ω with various fluence of 1ω. It was found that external 1ω can raise damage probability of multilayer films; the higher the 1ω energy density, the lower the damage threshold. Additionally, numerical simulation of damage probability was given for the simultaneous exposure to two beams.  相似文献   

6.
Analytical expression for the nucleation field has been derived for a hard/soft multilayer system with anisotropy perpendicular to the film plane, which depends on the soft thickness Ls, the interface exchange coupling constant Ji and the intrinsic material parameters. Both nucleation field and coercivity decrease as Ls increases. For very small Ls, the coercivity mechanism is pure nucleation and the hysteresis loops are square. As Ls rises, the coercivity mechanism changes from nucleation to pinning gradually, where the hysteresis loops have to be calculated numerically. The critical thickness at which the mechanism varies has been discussed in detail on the basis of easy axis orientation and the interface exchange coupling constant.  相似文献   

7.
A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.  相似文献   

8.
The mechanical action of laser exposure on a foil may result in the ablation of irradiated front layer and the rear-side spallation. The dynamics of an Al foil is studied by means of two-temperature (2T) hydrodynamics and molecular dynamics (MD). It is found that the rear-side spallation threshold F s exceeds the front-side ablation threshold F a. We propose to extend the common approach in laser-matter experiments by pump–probe measuring of the rear-side displacement.  相似文献   

9.
Using microinterferometric method, a transition in laser plume from the regime with spallation to the regime without spallation is experimentally studied for the first time. The transition occurs when the fluence Finc of incident radiation exceeds a threshold of “evaporation” (Finc)ev. It has been shown previously that the spallation layer is formed at fluence above the ablation threshold (Finc)abl. Thus the spallation exists within the limits (Finc)abl<Finc<(Finc)ev. A laser beam has a maximum fluence (Finc)c on the axis of the beam. The threshold Fev separates two cases with qualitatively different morphology: (1) with unbroken shell covering the crater entirely if Fabl<Fc<Fev, and (2) with the shell having an aperture in the center (like the volcano muzzle) if Fc>Fev.  相似文献   

10.
We perform molecular dynamics simulations to study the homogeneous nucleation in the freezing of molten potassium bromide clusters. The nucleation rates tend to decrease with increasing cluster size and temperature. The solid-liquid interfacial free energy σsl of 42.4-52.3 mJ/m2 is close to the values predicted by Turnbull's relation and comparable to the experimental observation by Buckle and Ubbelohde. It is interesting to find that there is no cluster size effect on the critical nucleus size. Critical nucleus sizes inferred from classical nucleation theory are of 6.5-20.7 K+Br ionic pairs in the temperature range of 400-600 K. The critical nucleus size at bulk MD freezing temperature obtained by extrapolation is about 45 K+Br ionic pairs, which is comparable to the experimental value of NaCl.  相似文献   

11.
X-ray specular-reflectivity measurements have been carried out on nanocrystalline/amorphous Fe/Ni75B25 multilayer films which were sputter-deposited on Si substrates, to investigate the evolution of interface roughness and the correlation between structure and transport properties. A significant interface roughness correlation with increasing Fe/NiB layer repetition was observed. The investigated films indicated a temperature dependent high electrical resistivity—104 μΩ-cm at 10 K and 103 μΩ-cm at 300 K—with a semiconductor-metal transition like behavior. Selected area electron diffraction revealed the presence of crystalline bcc Fe phase and NiB in amorphous state. The structural and transport properties of the multilayers are discussed.  相似文献   

12.
Despite the technological importance of metal/Si multilayer structures in microelectronics, the interface reactions occurring during their preparation are not yet fully understood. In this work, the interface intermixing in Mo/Si multilayer coatings has been studied with respect to their preparation conditions. Various samples, prepared at room temperature with different Mo deposition rates (0.06–0.43?Å?s?1) and a constant Si rate, have been investigated by detailed TEM observations. Contrary to the Si-on-Mo interface where no evidence of chemical intermixing could be found, the Mo-on-Si interface presents a noticeable interface zone whose thickness was found to noticeably decrease (from 4.1 to 3.2?nm) when increasing the Mo deposition rate. Such intermixing phenomena correspond to diffusion mechanisms having coefficients ranging from 0.25?×?10?15 to 1.2?×?10?15?cm2?s?1 at room temperature. By assuming a diffusion mechanism mainly driven by Mo–Si atomic exchanges to minimize the surface energy, the diffusion dependence with Mo deposition rate has been successfully simulated using a cellular automaton. A refined simulation including Mo cluster formation is also proposed to explain the scenario leading to the full crystallization of Mo layers.  相似文献   

13.
14.
《Physics letters. A》1987,120(7):349-352
For model disordered crystals we show that Debye theory yields the correct low-temperature specific heat if the measured low-frequency speed of sound is used in the calculation of the T3 term. This contrasts with the anomalous leading T term and other anomalies of amorphous or glassy materials, sugesting that thermodynamic properties might be useful in distinguishing a disordered-crystal phase from the amorphous or glassy phase. Our results make it plausible that below a threshold amount of disorder all thermodynamic properties are basically those of an elastic crystalline phase, while above this threshold value, they belong to a distinct phase, dependent on nonlinearities for its stability.  相似文献   

15.
F. Gou 《Applied Surface Science》2007,253(12):5467-5472
In this study, SiF interaction with amorphous Si surface at normal incidence was investigated using molecular dynamics simulation at 300 and 600 K. The incident energies of 50, 100 and 200 eV were used. The results show that the deposition rate is not sensitive to the incident energy, while with increasing the surface temperature, the deposition rate decreases. The etch yield is sensitive to the incident energy and the surface temperature. The etch yield increases with increasing incident energy and temperature. After bombarding, a SixFy interfacial layer is formed. The interfacial layer thickness increases with increasing incident energy mainly through enhanced penetration of the silicon lattice. In the interfacial layer, for SiFx (x = 1-3) species, SiF is dominant and only little SiF3 is present. At the outmost and innermost of the interfacial layer, SiF species is dominant. Most of SiF3 species is concentrated above the initial surface.  相似文献   

16.
17.
18.
《Composite Interfaces》2013,20(2-3):243-253
Glass beads, non-modified and modified with coupling agent, were filled separately into high density polyethylene to obtain composite materials with different interfacial adhesion strengths. In situtensile tests reveal the damage mechanisms, which are mainly induced by the interfacial debonding. The interfacial debonding process is observed and studied. The debonding stress is found to be linearly related to the opening angle formed at two poles of the particles. Initial and final opening angles, in addition to the corresponding debonding stresses, are measured. The interfacial fracture energy obtained by using the Griffith fracture theory is found to be 0.028 J m-2 and 0.058 J m-2 for mechanical anchorage and physical entanglement across the interface, respectively. The stronger the interfacial adhesion, the smaller is the maximum opening angle and greater the debonding stress.  相似文献   

19.
We use the molecular dynamics code, large-scale atomic/molecular massively parallel simulator (LAMMPS), to simulate high strain rate triaxial deformation of crystal copper to understand void nucleation and growth (NAG) within the framework of an experimentally fitted macroscopic NAG model for polycrystals (also known as DFRACT model). It is seen that void NAG at the atomistic scales for crystal copper (Cu) has the same qualitative behaviour as the DFRACT model, albeit with a different set of parameters. The effect of material temperature on the nucleation and growth of voids is studied. As the temperature increases, there is a steady decrease in the void NAG thresholds and close to the melting point of Cu, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows disappearance of the long-range order due to the creation of stacking faults and the system no longer has a face centred cubic (fcc) structure. Molecular dynamics simulation of shock in crystal Cu at strain rates high enough to cause spallation of crystal Cu are then carried out to validate the void NAG parameters. We show that the pre-history of the material affects the void nucleation threshold of the material. We also simulate high-strain-rate triaxial deformation of crystal Cu with defects and obtain void NAG parameters. The parameters are then used in a macroscale hydrodynamic simulation to obtain spallation threshold of realistic crystal Cu. It is seen that our results match experimental results within the limit of 20% error.  相似文献   

20.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号