首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Impact of step height of silicon carbide (SiC) substrates on heteroepitaxial growth of aluminum nitride (AlN) was investigated. Step-and-terrace structures with various step heights, 6 monolayer (ML), 3ML and 1ML, were formed on 6H-SiC (0 0 0 1) vicinal substrates by high-temperature gas etching. 2H-AlN layers were grown on the substrate by plasma-assisted molecular-beam epitaxy (MBE) and then these layers were characterized by atomic-force microscopy (AFM) and X-ray diffraction (XRD). High-quality AlN can be grown on SiC substrates with 6ML- and 3ML-height step, while AlN grown on SiC substrates with 1ML-height step exhibited inferior crystalline quality. A model for high-quality AlN growth on SiC substrates with 3ML-height step is proposed.  相似文献   

2.
Epitaxially grown ZnO thin film on 6H-SiC(0 0 0 1) substrate was prepared by using a spin coating-pyrolysis with a zinc naphthenate precursor. As-deposited film was pyrolyzed at 500 °C for 10 min in air and finally annealed at 800 °C for 30 min in air. In-plane alignment of the film was investigated by X-ray pole-figure analysis. Field emission-scanning electron microscope, scanning probe microscope, and He-Cd laser (325 nm) was used to analyze the surface morphology, the surface roughness and photoluminescence of the films. In the photoluminescence spectra, near-band-edge emission with a broad deep-level emission was observed. The position of the near-band-edge peak was around 3.27 eV.  相似文献   

3.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

4.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

5.
FexCo100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 °C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180° each other for all compositions. FexCo100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk FexCo100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe50Co50/MgO interface along the MgO[1 1¯ 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about −17% existing at the FeCo/MgO interface along the MgO[1 1¯ 0] direction.  相似文献   

6.
A series of metallic LaNiO3 (LNO) thin films were deposited on MgO (1 0 0) substrates by pulsed laser deposition (PLD) under the oxygen pressure of 20 Pa at different substrate temperatures from 450 to 750 °C. X-ray diffraction (XRD) was used to characterize the crystal structure of LNO films. θ-2θ scans of XRD indicate that LNO film deposited at a substrate temperature of 700 °C has a high orientation of (l l 0). At other substrate temperatures, the LNO films have mixed phases of (l l 0) and (l 0 0). Furthermore, pole figure measurements show that LNO thin films, with the bicrystalline structure, were epitaxially deposited on MgO (1 0 0) substrates in the mode of LNO (1 1 0)//MgO (1 0 0) at 700 °C. Reflection high-energy electric diffraction (RHEED) and atomic force microscopy (AFM) were also performed to investigate the microstructure of LNO films with the high (l l 0) orientation. RHEED patterns clearly confirm this epitaxial relationship. An atomically smooth surface of LNO films at 700 °C was obtained. In addition, bicrystalline epitaxial LNO films, fabricated at 700 °C, present a excellent conductivity with a lower electrical resistivity of 300 μ Ω cm. Thus, the obtained results indicate that bicystalline epitaxial LNO films could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.  相似文献   

7.
We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 °C reflection high-energy electron diffraction (RHEED) showed along the [−1 2 0] direction a 2× surface reconstruction for GaAs(6 3 1)A, and a 1× pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 °C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5−9−3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures.  相似文献   

8.
The early stages of the Cr/6H-SiC(0 0 0 1) interface formation at room temperature were investigated using XPS, LEED and work function (WF) measurements. Upon stepwise Cr evaporation in UHV up to a thickness of 5-10 monolayers (ML) at RT, the binding energy of the XPS Cr 2p3/2 core level peak shifted from 576.1 eV, at submonolayer coverage, to 574.7 eV (corresponding to metallic Cr) for the final Cr deposit, while the binding energies of the substrate XPS core level peaks remained stable. The WF exhibited a steep decrease of about 0.5 eV from the initial SiC substrate value, upon submonolayer coverage, but then increased gradually to saturation at a value of about 4.8 eV (polycrystalline Cr film with some chemisorbed oxygen). The growth of the ultrathin film was via 3D-cluster formation. The height of the Schottky barrier for the Cr/6H-SiC(0 0 0 1) contact was found by XPS to be 0.5 ± 0.1 eV. The results, generally, indicate the absence of any extended interfacial silicide-like interaction at RT.  相似文献   

9.
We present a review on the formation of gold silicide nanostructures using in situ temperature dependent transmission electron microscopy (TEM) measurements. Thin Au films of two thicknesses (2.0 nm and 5.0 nm) were deposited on Si (1 1 0) substrate under ultra-high vacuum (UHV) conditions in a molecular beam epitaxy (MBE) system. Also a 2.0 nm thick Au film was deposited under high vacuum condition (with the native oxide at the interface of Au and Si) using thermal evaporation. In situ TEM measurements (for planar samples) were made at various temperatures (from room temperature, RT to 950 °C). We show that, in the presence of native oxide (UHV-MBE) at the interface, high aspect ratio (≈15.0) aligned gold silicide nanorods were observed. For the films that were grown with UHV conditions, a small aspect ratio (∼1.38) nanogold silicide was observed. For 5.0 nm thick gold thin film, thicker and lesser aspect ratio silicides were observed. Selected area diffraction pattern taken at RT after the sample for the case of 5.0 nm Au on Si (1 1 0)-MBE was annealed at 475 °C show the signature of gold silicide formation.  相似文献   

10.
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 °C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19° with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 °C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed.  相似文献   

11.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

12.
The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 Å) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (TS). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at TS=25 °C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co〈1 1 0〉 easy directions. Concerning the samples prepared at TS=200 and 500° C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns.  相似文献   

13.
Initial adsorption of oxygen molecules on the Si(1 1 0)-16 × 2 surface and subsequent modification of the bonding states induced by mild (300 °C) annealing have been studied by synchrotron-radiation photoemission spectroscopy and scanning-tunneling microscopy. It has been shown that upon annealing, the intensity and the energy positions of the Si 2p suboxide components shift towards the values characteristic for the thermal oxide. This indicates the presence of a metastable chemisorption state of oxygen on the Si(1 1 0)-16 × 2 surface.  相似文献   

14.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

15.
SrRuO3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO3 thin films deposited on the (0 0 1) LaAlO3 substrates, and different from those deposited on (0 0 1) SrTiO3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.  相似文献   

16.
An initial oxidation dynamics of 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface has been studied using high resolution X-ray photoelectron spectroscopy and supersonic molecular beams. Clean 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface was exposed to oxygen molecules with translational energy of 0.5 eV at 300 K. In the first step of initial oxidation, oxygen molecules are immediately dissociated and atomic oxygens are inserted into Si-Si back bonds to form stable oxide species. At this stage, drastic increase in growth rate of stable oxide species by heating molecular beam source to 1400 K was found. We concluded that this increase in growth rate of stable oxide is mainly caused by molecular vibrational excitation. It suggests that the dissociation barrier is located in the exit channel on potential energy hypersurface. A metastable molecular oxygen species was found to be adsorbed on a Si-adatom that has two oxygen atoms inserted into the back bonds. The adsorption of the metastable species is neither enhanced nor suppressed by molecular vibrational excitation.  相似文献   

17.
(1 0 0) oriented BaNb2O6 films have been successfully grown on LaAlO3 (1 0 0) substrate at 750 °C or 450 °C in vacuum by pulsed laser deposition. The deposited BaNb2O6 PLD films exhibit room-temperature ferromagnetism. Ab initio calculations demonstrate that stoichiometric BaNb2O6 and that with barium vacancy are nonmagnetic, while oxygen and niobium vacancy can induce magnetism due to the spin-polarization of Nb s electrons and O p electrons respectively. Moreover, ferromagnetic coupling is energetically more favorable when two Nb/O vacancies are located third-nearest-neighbored. The observed room temperature ferromagnetism in BaNb2O6 films should be mainly induced by oxygen vacancies introduced during vacuum deposition, with certain contribution by Nb vacancies.  相似文献   

18.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

19.
CdSe thin films have been grown on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). The effects of substrate temperature and annealing treatment on the structural properties of CdSe layers were investigated. The growth rate slightly decreases due to the accelerated desorption of Cd from CdSe surface with an increase in the temperature. The sample grown at 260 °C shows a polycrystalline structure with rough surface. As the temperature increases over 300 °C, crystalline CdSe (0 0 1) epilayers with zinc-blende structure are achieved and the structural quality is improved remarkably. The epilayer grown at 340 °C displays the narrowest full-width at half-maximum (FWHM) from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) and the smallest root-mean-square (RMS) roughness of 0.816 nm. Additionally, samples fabricated at 320 °C were annealed in air for 30 min to study the films’ thermal stability. X-ray diffraction (XRD) results indicate that the zinc-blende structure remains unchanged when the annealing temperature is elevated to 460 °C, meaning a good thermal stability of the cubic CdSe epilayers.  相似文献   

20.
Electrical characteristics of B atomic-layer doped Si epitaxial films on Si(1 0 0) formed by B atomic-layer formation on Si(1 0 0) at 180 °C and subsequent capping Si deposition at 500 °C using ultraclean low-pressure chemical vapor deposition were investigated. From evaluation results of carrier concentration in the films, by low-temperature SiH4 exposure at 180-300 °C before the capping Si deposition at 500 °C, 70% improvement of B electrical activity was confirmed, and it is suggested that lowering the temperatures for B atomic-layer formation on Si(1 0 0) as well as SiH4 exposure before the capping Si deposition is effective to suppress B clustering and to achieve B atomic-layer doped Si films with extremely high carrier concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号