首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface film properties of the homopolymers polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA) and the copolymer poly(methyl methacrylate)-co-poly(butyl methacrylate) (PMMA-co-PBMA) and their blends with PS have been examined by atomic force microscopy (AFM) and contact angle measurements. The total and the Lifshitz-van der Waals, acid and base components of the surface free energy together with the work of adhesion and its components, the cohesive energy density and the solubility parameters of the homopolymer, copolymer and blend films were determined. Films of about 3 μm were considered. The results are discussed in terms of surface migration mechanisms based on surface free energy and solubilities of the polymers in the solvent, toluene in this paper. AFM imaging and contact angles revealed surface enrichment at the air polymer interface of PBMA for both the PS/PBMA blend and the copolymer PMMA-co-PBMA, whereas the PS/PMMA and PS/PMMA-co-PBMA blend film surfaces show island-like phase-separated structure of typical size 27.4-86.5 nm in diameter and 6.9-15.6 nm in height for PS/PMMA, while for PS/ PMMA-co-PBMA film surface the typical size is 49.6-153.3 nm in diameter and 1.6-14.2 nm in height.  相似文献   

2.
The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.  相似文献   

3.
表面增强拉曼光谱研究高分子共混物薄膜相结构   总被引:2,自引:0,他引:2  
采用拉曼光谱法研究了由聚苯乙烯(PS)/聚甲基丙烯酸甲酯(PMMA)的四氢呋喃(THF)溶液在玻璃基板上旋转涂膜得到的共混物薄膜。应用显微共焦拉曼光谱,根据PS在1604,1585cm-1处苯环的伸缩振动峰和PMMA在1728cm-1处羰基的伸缩振动峰,可以确定薄膜(厚度约为800nm)表面海岛状相结构的组分分布信息。另外,还对210℃下PS/PMMA(30/70)共混物薄膜退火过程中表面的变化进行了分析。采用表面增强拉曼散射效应对高聚物的增强作用得到了薄膜(厚度约为400nm)的Raman光谱,并且成功地对其组成进行了分析。  相似文献   

4.
This paper describes a facile strategy for fabricating arrays of two- and three-dimensional gold nanostructures using PDMS-infiltrated polystyrene (PS) colloidal crystals. PDMS molding of colloidal crystal, gold vapor deposition, and subsequent calcination of PS produced gold thin layers over hexagonal PDMS microwell arrays with hemispherical air-voids of approximately 140 nm on glass substrates. Vapor deposition of perfluoroalkylsilane thin layers improved the thermal stability of the colloidal template over 100 °C, providing a route to preparation of hollow architectures with gold thin layers supported by PDMS nanostructures. Surface modification of the PDMS using poly(allylamine hydrochloride) induced two-dimensional colloidal crystals of PS and PMMA spheres through electrostatic interactions. Particle aggregation of 13 nm gold nanoparticles in the PDMS microwells demonstrated a surface plasmon resonance band red-shifted to 810 nm, in comparison with that on the flat surface at 720 nm.  相似文献   

5.
Diblock copolymer thin films have recently received more attention due to their ability to organize into nanometric structures under thermal annealing. This phenomenon was studied for an asymmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) diblock copolymer with PMMA weight fraction of 0.3 and MW = 67,100 g mol−1. First, the surface chemistry of the substrate was modified to favor the formation of vertical PMMA cylinders surrounded by a PS matrix. We have also found that the mean pore area of cylinders increases with their coordination number. Finally, these films were used as a deposition or etching mask to produce well-organized arrays of holes, dots and nanopillars.  相似文献   

6.
The effects of addition of non-degradable polymers on the rate of enzymatic erosion for the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] have been studied at 37 °C and pH 7.4 in the aqueous solution of an extracellular PHB depolymerase from Alcaligenes facalis. Polystyrene (PS) or poly(methyl methacrylate) (PMMA) was selected as a minor component (5 wt%) in a blend because of their non-enzymatic activity. Enzymatic degradation behaviors of the “as-cast” and “annealed” blend films were investigated using atomic force microscopy and weight loss measurements. Although the spherulites of P(3HB-co-3HV) cover all blend film surfaces throughout, the retardation of biodegradation in the P(3HB-co-3HV)/PS blend films was detected from morphological observation and weight loss measurement for both as-cast and annealed blend films while there was little difference between the P(3HB-co-3HV)/PMMA blend and pure P(3HB-co-3HV). Since the enzymatic degradation of P(3HB-co-3HV) initially occurs by a surface erosion process, these degradation behaviors were explained by the surface structure of blend films measured by X-ray photoelectron spectroscopy. The surface of P(3HB-co-3HV)/PS blend films revealed an excess of PS, whereas the surface of P(3HB-co-3HV)/PMMA blend films was nearly covered by P(3HB-co-3HV). It was concluded, therefore, that the PS, which exists within P(3HB-co-3HV) spherulites at surface acts as a retardant of enzymatic attack to the surface of the blend film.  相似文献   

7.
Films of poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend were derived from a special procedure of casting semi-dilute solutions. Hydrophilic character and crystallization of PVDF were optimized by variation of PMMA concentration in PVDF/PMMA blends. It was found that a PVDF/PMMA blend containing 70 wt% PMMA has a good performance for the potential application of hydrophilic membranes via thermally induced phase separation. The films presented β crystalline phase regardless of PMMA content existed in the blends. Thermal analysis of the blends showed a promotion of crystallization of PVDF with small addition of PMMA which induced larger lamellar thickness of PVDF, leading to the largest spherulitic crystal of PVDF (10 wt% PMMA) is about 8 μm. SEM micrographs illustrated no phase separation occurred in blends, due to the high compatibility between PVDF and PMMA.  相似文献   

8.
Polystyrene spheres (PS) were synthesized by an emulsifier-free emulsion polymerization technique and the PS colloidal crystal templates were assembled orderly on clean glass substrates by dip-drawing method from emulsion of PS. Porous ZnO thin films were prepared by filling the ZnO sol into the spaces among the close-packed PS templates and then annealing to remove the PS templates. The effects of ZnO precursor sol concentration and dipping time in sol on the porous structure of the thin films were studied. The results showed an ordered ZnO porous thin film with designed pore size that depended on the sol concentration and PS size could be obtained. And the shrinkage of pore diameter was about 30-43%. X-ray diffraction (XRD) spectra indicated the thin film was wurtzite structure. The transmittance spectrum showed that optical transmittance decreased with the decrease of wavelength, but kept above 80% optical transmittances beyond the wavelength of 550 nm. Optical band gap of the porous ZnO thin film (fired at 500 °C) was 3.22 eV.  相似文献   

9.
Copper oxide thin films as solar selective absorbers were conveniently prepared by one-step chemical conversion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR spectra and Fourier transform infrared (FTIR) spectra were employed to characterize the composition, structure and optical properties of thin films. The results indicated that the composition, structure and optical properties of thin films were greatly influenced by reaction temperature, time and concentration of NaOH. When reaction temperature was fixed at 40 °C, the as-prepared films consist of pure cubic Cu2O. The surface morphology of thin films was changed from square-like structure (reaction time ≤ 25 min) to porous belt-like structure (reaction time ≥ 30 min) with the elongation of reaction time. While for thin films prepared at 60 °C and 80 °C, single Cu2O was observed after 5 min reaction. When reaction time is longer than 5 min, CuO appears and the content of CuO is increasing with the elongation of reaction time. With the increase of reaction temperature, the belt-like structure was easily formed for 60 °C/10 min and 80 °C/5 min. Decreasing concentration of NaOH also could result in the formation of CuO and porous belt-like structure. Simultaneously, the film thickness is increasing with the increase of reaction time, temperature and concentration. Films containing CuO with belt-like structure exhibited high absorptance (>0.9), and the emissivity of films increased with elongation of reaction time. Combination of the composition, structure and optical properties, it can be deduced that the porous belt-like structure like as a light trap can greatly enhance absorbance (α), while the composition, thickness and roughness of thin films can greatly influence the emissivity (?). The highest photo-thermal conversion efficiency was up to 0.86 (α/? = 0.94/0.08) for thin films prepared at 80 °C/5 min, which proved that the CuOx thin films can be served as high performance solar selective absorbers.  相似文献   

10.
本文制备了PS/PC(7/3)和PS/PMMA(5/5)的四氢呋喃(THF)溶液,通过缓慢蒸发溶剂制得PS/PC和PS/PMMA的共混物薄膜。利用不同的FTIR测试方法检测了制得薄膜中的组成分布。将PS/PC薄膜超薄切片,通过显微投射红外方法检测了其纵剖面的组成分布(测试步长为16μm)。结果表明:PS含量从膜底面到表面缓慢增大呈梯度分布,在膜表面附近急剧增大,即PS组分在成膜过程中向表面(与空气  相似文献   

11.
Secondary ion mass spectrometry (SIMS) employing an SF5+ polyatomic primary ion source was used to depth profile through poly(methylmethacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) thin films at a series of temperatures from −125 °C to 150 °C. It was found that for PMMA, reduced temperature analysis produced depth profiles with increased secondary ion stability and reduced interfacial widths as compared to analysis at ambient temperature. Atomic force microscopy (AFM) images indicated that this improvement in interfacial width may be related to a decrease in sputter-induced topography. Depth profiling at higher temperatures was typically correlated with increased sputter rates. However, the improvements in interfacial widths and overall secondary ion stability were not as prevalent as was observed at low temperature. For PLA, improvements in signal intensities were observed at low temperatures, yet there was no significant change in secondary ion stability, interface widths or sputter rates. High temperatures yielded a significant decrease in secondary ion stability of the resulting profiles. PS films showed rapid degradation of characteristic secondary ion signals under all temperatures examined.  相似文献   

12.
Microphase and macrophase separation phenomena can simultaneously appear in ABA/C copolymer blend systems due to the immiscibility among monomers A, B, and C. In this work, the surface morphologies and compositions of ABA/C blend thin films confined between two walls, which were used to mimic SEBS/PMMA films, have been simulated by a lattice Monte Carlo (MC) method. The effect of the polymer-wall interaction on the surface morphologies and compositions of thin films was investigated as a function of blend composition and film thickness. It is shown that the simulated surface morphologies of thin films resulting from the macrophase separation between copolymer ABA and homopolymer C and the microphase separation between block A and block B in ABA copolymer are similar to the experimental surface morphology of SEBS/PMMA polymer blend films observed by atomic force microscope (AFM). The effect of substrate on the surface morphologies by MC simulation is qualitatively consistent with the experimental results. The composition profiles of thin films are given to characterize the micro- and macrophase separation in thin films. It is indicated that the surface energy of the substrate (substrate/air) plays a crucial role on the surface composition. For a fixed surface, the adsorptions of polymer on the substrate and film thickness are also important.  相似文献   

13.
The structure of the Co thin films on Pd(1 1 1) and the effect of the CO adsorption on Co thin films were studied by Co K-edge surface X-ray absorption fine structure (XAFS). The polarization dependences of the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra indicate that Co thin films grow in the fcc stacking mode on Pd(1 1 1) up to 12 ML. The analysis of the nearest neighbor shell shows little mechanical strain at the interface, indicating that Co atom does not grow pseudomorphically on Pd(1 1 1). There is no alloy-like structure at the interface. CO adsorption causes no structural change of the Co thin films but modifies the Co surface electronic state. These structural studies provide deep insight in the magnetic property of the Co thin films on Pd(1 1 1).  相似文献   

14.
The multiferroic (PMN-PT/CFO)n (n = 1,2) multilayered thin films have been prepared on SiO2/Si(1 0 0) substrate with LNO as buffer layer via a rf magnetron sputtering method. The structure and surface morphology of multilayered thin films were determined by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. The smooth, dense and crack-free surface shows the excellent crystal quality with root-mean-square (RMS) roughness only 2.9 nm, and average grain size of CFO thin films on the surface is about 44 nm. The influence of the thin films thickness size, periodicity n and crystallite orientation on their properties including ferroelectric, ferromagnetic properties in the (PMN-PT/CFO)n multilayered thin films were investigated. For multilayered thin films with n = 1 and n = 2, the remanent polarization Pr are 17.9 μC/cm2 and 9.9 μC/cm2; the coercivity Hc are 1044 Oe and 660 Oe, respectively. In addition, the relative mechanism are also discussed.  相似文献   

15.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

16.
Abstract

The interphase boundary of incompatible polymer blends such as poly(methyl methacrylate) (PMMA)/natural rubber (NR) and polystyrene (PS)/NR, and of compatible blends such as PMMA/NR/epoxidized NR (ENR) and PS/NR/styrene–butadiene–styrene (SBS) block copolymer, where ENR and SBS were used as compatibilizers, was studied by means of microindentation hardness (H) and microscopy. Cast films of neat PMMA and PS, and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR, and PS/NR/SBS were prepared by the solution method using a common solvent (toluene). Hardness values of 178 and 173 MPa were obtained on the surfaces of the neat PMMA and PS, respectively. After the inclusion of soft phases, the binary (incompatible) and the ternary (compatible) blend surfaces show markedly lower H‐values. Scanning electron and optical microscopy reveal a clear difference at the phase boundary of the surface of compatible (smooth boundary) and incompatible (sharp boundary) blends. The compatibilized blends were characterized by using microhardness measurements, as having the thinnest phase boundary (~30 µm), while incompatible blends were shown to present a boundary of about 60 µm. The hardness values indicate that the compatibilizer is smoothly distributed across the interface between the two blend components. Results highlight that the microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non‐ or compatibilized polymer blends and other inhomogeneous materials.  相似文献   

17.
Segmented polystyrene (PS) and poly-methyl methacrylate (PMMA) nanofibers were fabricated by wetting nanoporous alumina templates with multilayered polymer thin films. The order and thickness of the polymers within the thin films affected the resulting nanofiber morphology, PS and PMMA segment properties, and created unique core-shell structure in the PMMA segments. The core-shell structure suggests a complex wetting phenomenon. Fabrication of polymer nanostructures by wetting of layered thin films opens the arena of multifunctional, one-dimensional, polymer nanostructures with segments having individual and specific functionalities.  相似文献   

18.
Hierarchical zinc oxide (ZnO) micro/nanostructured thin films were grown onto as-prepared and different annealed ZnO seed layer films by a simple two step chemical process. A cost effective successive ionic layer adsorption and reaction (SILAR) method was employed to grow the seed layer films at optimal temperature (80 °C) and secondly, different hierarchical based ZnO structured thin films were deposited over the seed layered films by chemical bath deposition (CBD). The influence of seed layer on the structural, surface morphological, optical and wettability behavior of the ZnO thin films were systematically investigated. The XRD analysis confirms the high crystalline nature of both the seed layer and corresponding ZnO micro/nanostructured films with a perfect hexagonal structure oriented along (0 0 2) direction. The surface morphology revels a complex and orientated hierarchical based ZnO structured films with diverse shapes from plates to hexagonal rod-like crystal to tube-like structure and even much more complex needle-like shapes during secondary nucleation, by changing the seed layer conditions. The water contact angle (WCA) measurements on hierarchical ZnO structured films are completely examined to study its surface wettability behavior for its suitability in future self-cleaning application. Photoluminescence (PL) spectra of the ZnO structured film exhibit UV and visible emissions in the range of 420-500 nm. The present approach demonstrates its potential for low-temperature, large-scale, controlled synthesis of crystalline hierarchical ZnO nanostructures films.  相似文献   

19.
Planar quarter wave stacks based on amorphous chalcogenide Ge-Se alternating with polymer polystyrene (PS) thin films are reported as Bragg reflectors for near-infrared region. Chalcogenide films were prepared using a thermal evaporation (TE) while polymer films were deposited using a spin-coating technique. The film thicknesses, d∼165 nm for Ge25Se75 (n=2.35) and d∼250 nm for polymer film (n=1.53), were calculated to center the reflection band round 1550 nm, whose wavelengths are used in telecommunication. Optical properties of prepared multilayer stacks were determined in the range 400-2200 nm using spectral ellipsometry, optical transmission and reflection measurements. Total reflection for normal incidence of unpolarized light was observed from 1530 to 1740 nm for 8 Ge-Se+7 PS thin film stacks prepared on silicon wafer. In addition to total reflection of light with normal incidence, the omnidirectional total reflection of TE-polarized light from 8 Ge-Se+7 PS thin film stacks was observed. Reflection band maxima shifted with varying incident angles, i.e., 1420-1680 nm for 45° deflection from the normal and 1300-1630 nm for 70° deflection from the normal.  相似文献   

20.
With 800-nm, 120-fs laser pulses, optical nonlinearity has been studied in a series of thin films containing poly(methyl methacrylate) (PMMA), filled with surfactant acetylacetone (Acac) capped TiO2 nanoparticles, which were synthesized by a simple in situ sol-gel/polymerization process, assisted by spin coating and multi-step baking. The resulting nanohybrid thin films have highly optical transparency and demonstrate a unique nonlinear optical (NLO) response. The highest nonlinear refractive index (n2) is observed up to 6.55 × 10−2 cm2 GW−1 in the nanohybrid thin film of 60 wt% Ti(OBu)4 in PMMA, with a negligible two-photon absorption (TPA), as confirmed by the Z-scan technique. The titanium precursor loading combined with the nature of the capping molecules are used to influence the ability of nanoparticles to nonlinear optical response. Indeed, the ligands at the nanoparticles’ surface can not only control the extent of the interaction between the organic molecules and the embedded nanoparticles but also influence the optical nonlinearities of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号