首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 54 毫秒
1.
为了快速检测马铃薯叶片的水分含量,并探究受到干旱胁迫时叶片含水率变化情况,利用高光谱成像对马铃薯叶片含水率进行检测和可视化研究。采集71个叶片,用烘干法对叶片水分梯度进行控制,共得到355个样本。使用高光谱分选仪器采集叶片862.9~1 704.2 nm(256个波长)的光谱成像数据,采用称重法测量含水率。利用Sample set partitioning based on joint X-Y distance(SPXY)算法将总样本按照2∶1的比例划分为建模集(240个样本)和验证集(115个样本)。对采集的数据进行光谱特征分析,本文分别用CA和RF两种算法,各筛选得到15个特征波长。基于CA筛选出相关系数高于0.96的15个波长分别为1 406.82,1 410.12,1 403.62,1 413.32,1 416.62,1 419.82,1 400.32,1 423.12,1 426.32,1 429.62,1 432.82,1 436.12,1 439.32,1 442.52和1 445.8 nm。基于RF算法筛选被选概率高于0.3的15个特征波长,按照被选择概率值从大到小排列,分别为1 071.62,1 041.12,1 222.52,1 465.22,1 397.02,1 449.02,1 034.32,1 523.22,976.42,1 172.52,979.82,1 165.82,1 037.72,1 426.32和869.8 nm。用CA和RF算法筛选到的特征波长建立PLSR模型,分别记为CA-PLSR模型和RF-PLSR模型。利用高精度模型检测结果,对马铃薯叶片含水率进行可视化分析,首先计算马铃薯叶片图像每个像素点的含水率,得到灰度图像,然后对灰度图像进行伪彩色变换,绘制出叶片含水率可视化彩色图像。为了体现马铃薯叶片烘干处理中含水率变化进程,用HSV彩色模型对样本叶片的伪彩色图像进行分割,获得分割图像结果,显示出在某含水率区间的叶片面积比例。结果显示,CA算法选取的15个波长均在1 400.3~1 450.0 nm范围内,CA-PLSR模型的建模精度(R2c)为0.975 5、建模集均方根误差(RMSEC)为2.81%,验证集精度(R2v)为0.933 2、验证集均方根误差(RMSEV)为2.31%。RF算法选取的特征波长分布范围较CA法选取范围广,具有局部“峰谷”特性,且RF-PLSR模型的建模集精度(R2c)为0.983 2、RMSEC为2.32%,验证集精度(R2v)为0.947 1、RMSEV为2.15%。选取RF-PLS模型计算马铃薯每个像素点的含水率,得到伪彩色变换图像,观察可知随着烘干时间的增加含水率逐渐下降;并能够从叶片结构角度看到,随着水分胁迫的加强,叶片从边缘开始失水,逐渐向叶片中间蔓延,其中叶茎和叶脉的含水率较其他部位高。计算得到叶片伪彩色图像中含水率大于90%,80%和70%的像素点占整个叶片图像的比例。利用高光谱成像技术可以实现马铃薯叶片的含水率检测与分布可视化表达,为监测马铃薯生长状况以及叶片含水率分析提供新的理论根据。  相似文献   

2.
刘燕德  邓清 《发光学报》2015,36(8):957-961
为实现脐橙叶片叶绿素含量无损检测及其分布可视化表征,采用高光谱成像技术,结合自适应重加权算法(CARS)和连续投影算法(SPA),筛选特征光谱变量,进行脐橙叶片叶绿素含量及可视化分布研究.选取叶绿素测量位置的7×7矩形感兴趣区域,提取并计算脐橙叶片平均光谱.基于Kennard-ston方法,将148个脐橙叶片样品划分成建模集和预测集(111:37).采用CARS和SPA算法分别筛选出了32个和6个叶绿素特征光谱变量,用于建立偏最小二乘(PLS)回归模型.采用37个未参与建模的脐橙叶片样品评价模型的预测能力,经比较,CARS-PLS和SPA-PLS模型均优于变量筛选前的PLS模型,且CARS-PLS和SPA-PLS模型的预测能力几乎相同,其预测集相关系数分别为0.90和0.91,均方根误差分别为1.53和1.60.SPA-PLS模型计算脐橙叶片每个像素点的叶绿素含量,经伪彩色变换,绘制了脐橙叶片叶绿素含量可视化分布图.实验结果表明:变量筛选方法结合高光谱成像技术,能够实现脐橙叶片叶绿素含量无损检测及叶绿素分布可视化表达,并简化了数学模型.

  相似文献   

3.
基于高光谱成像技术的油菜叶片SPAD值检测   总被引:11,自引:0,他引:11  
以油菜叶片为研究对象,利用高光谱成像技术,成功建立了叶绿素相对值SPAD值的预测模型。共采集了160个油菜叶片样本在380~1030 nm范围内的高光谱图像。选择500~900 nm之间的平均光谱作为油菜叶片样本的光谱。利用蒙特卡罗最小二乘法(monte carlo partial least squares, MC-PLS)剔除了13个异常样本,基于剩余的147个样本光谱数据与SPAD测量值进行分析,采用了不同的方法建立了多种预测模型,包括:全光谱的偏最小二乘法(partial least squares, PLS)模型,连续投影算法(successive projections algorithm, SPA)选择特征波长的PLS预测模型,“红边”位置(λred)的简单经验估测模型,三种植被指数R710/R760,(R750-R705)/(R750-R705)和R860/(R550*R708)分别建立的简单经验估测模型,以及基于这三种植被指数的PLS预测模型。建模结果显示,全光谱的PLS模型预测效果最为精确,其预测相关系数rp为0.833 9,预测均方根误差RMSEP为1.52。而使用SPA算法选出的8个特征波长所建立的PLS模型其预测结果可达到与全光谱的PLS模型非常接近的水平,而且在保证一定精度的条件下减少了大量运算,节省了运算时间,大幅提高了建模的速度。而基于红边位置和选择的三种植被指数而建立的简单经验估计模型其预测结果虽与基于全光谱的PLS预测模型有一定差距,但模型简单、运算量小,适合用于对精度要求不高的场合,对后续的便携仪器设备开发有一定的指导作用。  相似文献   

4.
高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究   总被引:3,自引:0,他引:3  
为了快速、准确、直观估测尖椒叶片的营养水平和生长状况,利用高光谱成像技术结合化学计量学方法对不同叶位尖椒叶片氮素含量(nitrogen content, NC)的分布进行了可视化研究。按照叶片位置采摘尖椒叶片,并采集高光谱数据,然后测定相应叶片的SPAD和NC。提取出叶片的光谱信息后,采用Random-frog(RF)算法提取特征波段,分别选出5条与10条特征波段。针对选取的特征波段和全波段,分别建立偏最小二乘回归(partial leastsquares regression, PLSR)模型,结果表明采用特征波段建立的PLSR模型性能较好(SPAD:RC=0.970, RCV=0.965, RP=0.934; NC: RC=0.857, RCV=0.806, RP=0.839)。根据预测模型计算尖椒叶片高光谱图像每个像素点的SPAD与NC,从而实现SPAD与NC的可视化分布。事实上叶片的SPAD在一定程度上可以反映含氮量,二者分布图的变化趋势基本一致,验证了可视化结果的正确性。结果表明:运用高光谱成像技术可以实现对不同叶位尖椒叶片氮素分布的可视化研究,这为监测植物的生长状况和养分分布提供理论依据。  相似文献   

5.
无损检测植物叶片水分对植物生理生化研究及灌溉管理和旱情监测等均具有重要意义。利用Gaia Sorter近红外高光谱仪(900~1 700 nm),以不同生育期的60个鲜活玉米叶片为试验材料,对叶肉不同区域的平均光谱及烘干称重法得到的水分含量分别用偏最小二乘法(PLS)及逐步多元线性回归(SMLR)进行建模分析。结果表明,验证集决定系数/标准偏差分别为0.975/1.18和0.980/1.02,均取得较好的预测效果,可实现单个玉米叶片平均含水量的测定;SMLR优选的特征波长(1 406和1 692 nm)建模预测结果表明,利用高通量近红外相机结合滤光片方法实现玉米叶片冠层或高空遥感测量的可行性。同时,进行了叶片不同区域水分含量的成像分析,结果表明,验证集中6个叶片的叶肉与主叶脉区域水分含量的参考均值和预测均值的相关系数均达到0.85以上,预测结果与实际情况相符合。  相似文献   

6.
高光谱技术分析茶树叶片中叶绿素含量及分布   总被引:4,自引:0,他引:4  
植物叶片叶绿素含量及分布是植物营养信息表达的一个重要指标.以茶树为研究对象,利用高光谱技术分析茶树叶片中叶绿素含量及其分布.通过采集茶树鲜叶的高光谱图像,利用7种不同的算法从高光谱数据中提取相应的特征参数,并根据特征参数和叶绿素含量的参考测量值分别拟合出相应的预测模型.结果显示,二次土壤调节植被指数算法提取的特征参数最...  相似文献   

7.
以两年完整生育期玉米田间试验为基础,利用便携式地物光谱仪和叶绿素仪(SPAD-502)分别测定了叶片高光谱数据和叶绿素含量(SPAD),在两者相关分析的基础上,选取多种光谱参数分别构建了每年的叶片SPAD预测模型,并对模型进行了详细的验证和评价。结果表明:两年间叶片光谱反射率及其一阶导数的平均值曲线差别很小;两年间叶片SPAD与光谱反射率及其一阶导数的相关系数曲线的敏感区域基本相同;以一阶导数为光谱参数构建的预测模型效果不稳定;以LCI和DSI(R550附近,R680附近)和DSI(R680附近,R710附近)构建的预测模型效果良好,能有效预测玉米叶片SPAD。  相似文献   

8.
柑橘叶片水分亏缺是影响柑橘生长发育的重要因素之一,为研究水分胁迫对柑橘含水率的影响,利用高光谱快速无损检测柑橘叶片含水率,并应用伪彩色处理实现含水率可视化。收集100片柑橘叶片,使用烘干法得到鲜叶和烘干叶片一共500个不同梯度含水率的数据样本,将样本按7∶3的比例划分为训练集(350个样本)和测试集(150个样本),使用决定系数(R2)和均方根误差(RMSE)来评估模型预测的好坏。采用卷积神经网络(CNN)对高光谱数据进行预测,CNN模型使用一维卷积核,一共三层卷积池化层,使用RELU激活函数激活,输出层采用linear激活函数回归预测,使用nadam算法对模型进行优化更新,迭代次数为1 000次;将原始光谱数据和SG,MSC和SNV三种预处理后的光谱数据,与全波段、CARS筛选的特征波段、PCA提取的特征波段组合,导入CNN模型,确定最佳模型为原始光谱数据的CARS-CNN,训练集的R2c和RMSEC分别为0.967 9和0.016 3,测试集的R2v和RMSEV分别为0.9...  相似文献   

9.
苹果树叶片叶绿素含量高光谱估测模型研究   总被引:12,自引:0,他引:12  
叶片叶绿素含量是评估果树长势和产量的重要参数,实现快速、无损、精确的叶绿素含量估测具有重要意义。本研究以山东农业大学苹果园为试验区,采用高光谱分析技术探索苹果树叶片叶绿素含量的估测方法。通过分析叶片高光谱曲线特征,对原始光谱分别进行一阶微分、红边位置以及叶面叶绿素指数(LCI)变换,分别将其与叶绿素含量进行相关分析及回归分析,建立叶绿素含量估测模型并进行检验,从中筛选出精度最高的模型。结果显示,以LCI为变量的估测模型以及以一阶微分521和523nm组合为变量的估测模型拟合精度最高,决定系数R2分别为0.845和0.839,均方根误差RMSE分别为2.961和2.719,相对误差RE%分别为4.71%和4.70%。因此LCI及一阶微分是估测苹果树叶片叶绿素含量的重要指标。该模型对指导苹果树栽培生产具有积极意义。  相似文献   

10.
高光谱成像技术鉴别菠菜叶片农药残留种类   总被引:2,自引:0,他引:2  
吉海彦  任占奇  饶震红 《发光学报》2018,39(12):1778-1784
利用高光谱成像技术无损鉴别菠菜叶片农药残留种类。采用高光谱成像仪采集900~1700nm波段内的光谱数据,采用多元散射校正对光谱数据进行预处理。利用主成分分析对不同种类菠菜样品的光谱数据进行分析,结果表明主成分分析能在可视化层面对不同种类的农药残留菠菜样品进行有效判别。另外,将卡方检验特征选择算法分别与支持向量机、朴素贝叶斯、决策树和线性判别分析算法结合,并采用10-fold交叉验证评价方法,筛选出最佳波段和最优判别模型(线性判别模型)。筛选出的8个特征波长为1439.3,1442.5,1445.8,1449,1452.3,1455.5,1458.7,1462nm,模型的预测准确率达到0.993且10次交叉验证的标准差为0.009。结果表明,基于高光谱成像技术能准确地识别菠菜叶片上的农药残留种类。  相似文献   

11.
基于 PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演   总被引:1,自引:0,他引:1  
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。传统的分光光度法对植物叶片破坏性较大且无法实时、快速、无损地获取叶绿素含量。新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。光学辐射传输模型PROSPECT从生物物理、化学的角度以及能量传输的过程出发,定量描述了叶片色素、水分、结构参数等对叶片反射光谱的影响。因此,提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值,实时、快速、无损、定量获取植物叶片叶绿素的含量。第一,多次测量三种蔬菜叶片的反射光谱,并用叶绿素仪测量SPAD值。然后,预处理光谱数据,获得平均反射率光谱。第二,以欧式距离为评价函数,利用PROSPECT模型对实测反射率光谱进行拟合。拟合过程中三种蔬菜欧式距离最大为0.008 9,最小为0.006 4,平均为0.007 5,表明该模型能够很好地拟合蔬菜叶片的反射率光谱。第三,根据拟合结果,反演叶绿素含量和透射率光谱,再根据透射率光谱获取叶片在940和650 nm波长处的光透过率,计算叶片的反演SPAD值。第四,建立反演叶绿素含量、反演SPAD值与实测SPAD值的关系模型。结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为:y=1.463 3x+16.374 3,两者相关系数为0.927 1,模型的决定系数为0.862,均方根误差为2.11;(2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好,其关系模型为:y=0.986 9x-0.668 3,两者相关系数为0.845 1, 模型的决定系数为0.714 3,均方根误差为3.380 2。研究表明,通过测量植物叶片的反射率光谱,利用PROSPECT模型可以无损、定量地获取蔬菜叶片的叶绿素含量和SPAD值。该方法可推广至其他植物的叶绿素测量和实时监测,为变量施肥、精准种植提供可靠的数据支持。研究结果对蔬菜生长态势的无损监测具有重要的意义。  相似文献   

12.
温室黄瓜霜霉病严重度的准确估算是科学防治霜霉病的前提条件,对于减少农药使用量、提升温室黄瓜品质和农民经济效益具有重要意义。机器学习在植物病害诊断领域的应用越来越广泛,已经取得了丰富的研究成果,病害严重程度的估算萌发了新的思路。利用霜霉病可见光图像并结合机器学习方法,开展温室黄瓜霜霉病严重度快速准确定量估算研究。利用数码相机采集温室黄瓜霜霉病叶片图像并进行预处理,剔除病害图像的背景。以黄瓜霜霉病叶片图像为输入,构建基于卷积神经网络(CNN)的估算模型。利用可见光光谱颜色特征(CVCF)结合支持向量机进行温室黄瓜霜霉病病斑图像分割,采用SURF(speeded up robust features)特征及形态学操作对分割结果进行优化。在获取黄瓜霜霉病病斑分割图像后,提取病斑图像RGB,HSV,L*a*b*,YCbCr和HSI共5个颜色空间15个颜色分量的平均值和标准差2个颜色特征,以及在此基础上结合灰度共生矩阵提取各颜色分量的对比度、相关性、熵和平稳度4个纹理特征,共计90个特征;利用Pearson相关性分析进行特征优选,采用与温室黄瓜霜霉病严重程度实际值相关性高的图像特征构建浅层机器学习估算模型,包括支持基于向量机回归(SVR)的估算模型和基于BP神经网络(BPNN)的估算模型。基于以上3种估算模型开展黄瓜霜霉病严重度定量估算,采用决定系数(R2)和归一化均方根误差(NRMSE)对估算模型准确率进行定量评价。结果表明,模型估算的温室黄瓜霜霉病严重度与实际值之间具有良好的线性关系,其中,基于CNN的估算模型准确率最高,模型的R2为0.919 0,NRMSE为23.33%,其次是基于BPNN的估算模型,其R2为0.890 8,NRMSE为24.64%,基于SVR的估算模型的准确率最低,其R2为0.8901,NRMSE为31.08%。研究结果表明,利用黄瓜霜霉病可见光图像数据,结合卷积神经网络估算模型,实现了温室黄瓜霜霉病严重度的准确估算,能够为温室黄瓜霜霉病的科学防治提供参考,提高病害防治效率,减少农药使用。  相似文献   

13.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

14.
保鲜膜能提高果蔬保水性,隔绝外界细菌侵染,延长货架期。为了准确估测覆盖保鲜膜果蔬品质的优劣,对其货架期进行预测具有重要意义。应用高光谱技术结合化学计量学方法对同等贮藏条件下覆膜新鲜菠菜叶片的货架期进行了预测。先采集五个不同贮藏时间下75盘共300片菠菜样本在可见-近红外(Vis-NIR,380~1 030 nm)与近红外(NIR,874~1 734 nm)波段的高光谱数据,然后测定不同贮藏时间下菠菜叶片叶绿素含量。提取300片覆膜菠菜叶片的平均光谱(200个为建模集,100个为预测集)后,对建模集光谱进行主成分分析(principal component analysis,PCA),发现不同贮藏期内叶片光谱数据在前3个主成分空间有一定的聚类。根据建模集光谱信息与预先赋予的不同贮藏期虚拟等级分别建立偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)模型,得到预测集样本的贮藏期总的判别准确率分别为83%(Vis-NIR)和81%(NIR)。表明,高光谱技术结合化学计量学方法能够实现对新鲜菠菜货架期的分类和预测,为消费者正确评价覆盖保鲜膜的菠菜品质提供了理论指导,也为后期果蔬货架期检测仪器的开发提供了技术支持。  相似文献   

15.
In this letter, a hyperspectral image encryption algorithm based on 3D Arnold transform and gyrator transform in spectrum domain is proposed. First, the original hyperspectral cube will be scrambled by 3D Arnold transform in the spatial domain. Subsequently, the obtained intermediate data are converted into spectrum domain to create a new spectral image. This new spectral image is decomposed into numerous single pieces and encoded using gyrator transform. The corresponding decrypted hyperspectral cube can be recovered by performing along the reverse direction of the encryption process. Some numerical simulations have been performed to verify the validity and capability of the proposed hyperspectral encryption algorithm.  相似文献   

16.
刘恒殊  黄廉卿 《光学技术》2002,28(6):549-550
图像压缩是超光谱遥感技术中急需解决的一个问题。分析了像素的高位与低位的相关性 ,提出了对字位进行运算的无损压缩算法。结果表明 ,本算法的压缩比与目前一些无损压缩比基本一致 (1 6~ 2 4) ,但这种算法运算简单 ,在去相关过程中 ,每位只进行一次运算 ,而且均为二进制运算 ,易于硬件电路的实现和进行实时压缩。所述思想为超光谱图像压缩提出了一条新思路  相似文献   

17.
竹叶含有丰富的功能性成分,具有良好的抗氧化、调节血脂、抗癌、保护心脑血管等功效,在食品和药品等领域具有较高的应用价值,但不同品种的竹叶其功能性成分差异较大。传统对于竹类品种的鉴别主要是通过观察竹叶大小、纹理、竹枝分枝和竹竿高度等,效率低且错误率较高,因此,快速准确的区分不同品种的竹叶,是竹类资源开发和加工过程中的重要任务之一。采用近红外高光谱(900~1 700 nm)技术对我国不同产地的12种竹叶进行鉴别分析。用主成分分析(PCA)对竹叶进行聚类分析,应用主成分因子中X-loading(XL)和random frog(RF)算法进行特征波段的提取,分别得到6条(931,945,1 217,1 318,1 473和1 653 nm)和12条(1 052,1 140,1 163,1 177,1 180,1 193,1 230,1 241,1 477,1 483,1 629和1 649 nm)特征波段,并基于全波段(238条波长)及采用以上算法所得的特征波段建立最小二乘-支持向量机(LS-SVM)判别分析模型,其识别率分别为99.17%(全波段),95.83%(XL算法),95.83%(RF算法)。最后,采用受试者工作特征曲线(receiver operating characteristic curve, ROC curve)对LS-SVM模型的判别效果进行验证,结果表明,曲线下面积(AUC)均在0.98以上,说明近红外高光谱结合LS-SVM可以很好地实现竹类的鉴别分析,这为竹叶的食用和药用价值的开发利用提供理论参考。  相似文献   

18.
高光谱遥感图像的小波去噪方法   总被引:2,自引:0,他引:2  
高光谱遥感图像是由二维空间信息和一维光谱信息组成的三维数据。普通的去噪方式通常是分别对空间信息或光谱信息进行去噪,其主要缺点是忽视了高光谱图像强烈的谱间相关性和图谱合一的特点。针对这些特点,文章提出一种基于小波变换的高光谱遥感图像去噪方法。该方法对各波段高光谱图像逐一进行二维小波变换,根据含噪声大的波段与噪声小的波段的波长关系,对小噪声波段的高频系数加权求和,代替噪声大的波段的高频系数,通过小波逆变换得到去噪后的重构图像。该方法运算速度快,能有效地降低噪声。对机载可见红外成像光谱仪数据(AVIRIS)实验表明,与经典的BayesShrink图像去噪方法相比,方法重构图像的信噪比(SNR)高出3.8~10.6 db,节省运算时间一半以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号