首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 54 毫秒
1.
2.
苹果轻微机械损伤高光谱图像无损检测   总被引:2,自引:0,他引:2  
无损检测是高光谱遥感应用研究热点之一。苹果在采摘、运输过程中易发生轻微机械损伤而影响其品质。使用高光谱成像系统分别采集54个轻微损伤的“黄香蕉”与“烟台富士”苹果可见-近红外波段(400~1 000 nm)的图像,提取苹果损伤区域的均值波谱曲线,对其进行最小噪声分离变换和基于几何顶点端元原理提取端元波谱,计算损伤区域波谱和端元波谱的光谱角,构建了端元提取光谱角苹果轻微机械损伤检测模型。通过设定光谱角阈值分别检测“黄香蕉”与“烟台富士”苹果轻微机械损伤,并与MNF变换、PCA方法检测精度进行对比分析,结果表明EESA模型检测苹果轻微机械损伤的精度最高,检测正确率分别达到94.44%和90.07%。  相似文献   

3.
基于共聚焦拉曼光谱技术的苹果轻微损伤早期判别分析   总被引:1,自引:0,他引:1  
苹果在采摘、分拣、储存和运输过程中容易受到挤压、振动和碰撞而损伤,轻微损伤早期肉眼很难识别,轻微损伤部位易被病原微生物入侵而导致自身和周围水果腐烂,因此,苹果轻微损伤的早期快速准确地判别能有效地降低经济损失,对苹果的采后处理和储存具有重要意义。本研究应用拉曼光谱结合化学计量学方法对苹果早期轻微损伤进行快速识别。采用Savitzky-Golay(SG)卷积对原始拉曼光谱进行平滑去噪,用自适应迭代重加权惩罚最小二乘(airPLS)算法进行基线校正,用非线性的支持向量机(SVM)回归算法建立分类判别模型,采用KS法划分训练集和验证集后,基于线性和多项式核函数建立SVM分类模型的分类准确率可达到97.8%。结果表明,拉曼光谱技术结合化学计量学方法可快速识别苹果的早期轻微损伤,展示了拉曼光谱技术用于判别苹果早期轻微损伤的应用前景。  相似文献   

4.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。  相似文献   

5.
基于高光谱成像的苹果多品质参数同时检测   总被引:7,自引:0,他引:7  
利用高光谱空间散射曲线的3个洛伦兹拟合参数对苹果的品质(硬度、可溶性固溶物含量)进行同时检测。采用偏最小二乘,逐步多元线性回归和BP神经网络3种方法,对归一化处理和未归一化处理的3个洛伦兹参数组合分别建立苹果品质的预测模型。结果表明:采用偏最小二乘法对未归一化处理参数的组合建立硬度的预测模型其预测结果最好,校正组相关系数Rc=0.93,校正标准差SEC=0.56,验证组相关系数Rv=0.84,验证标准差SEV=0.94。采用偏最小二乘法对归一化处理参数的组合建立可溶性固形物的预测模型其预测结果最好,Rc=0.95,SEC=0.29,Rv=0.83,SEV=0.63。研究结果表明:利用高光谱空间散射曲线的多拟合参数组合可以同时检测苹果的多品质参数。  相似文献   

6.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究   总被引:2,自引:0,他引:2  
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。  相似文献   

7.
针对高光谱成像特点,提出了一种基于三维特征检测微小摄像头的方案。在空间维利用猫眼效应筛选疑似目标,在光谱维对结果进行精准判定。依据摄像头结构,分析了可见光摄像头的反射光谱特征。基于几何光学和辐射度学,计算和仿真了系统的探测距离。结果表明,正常工作时,光功率影响最小探测距离,目标尺寸影响最大探测距离。搭建了微小摄像头光谱特征验证系统。结果表明,采用吸收型红外截止滤光片的目标的非反射光占比曲线变化平缓且数值高,采用反射型红外截止滤光片的目标的非反射光占比曲线可见光部分数值高,红外部分数值低,从700 nm附近开始下降,甚至发生突变,实验数据显示,突变位置的斜率绝对值是红外波段斜率绝对值的10倍以上。实验结果与预期分析的结果一致,验证了高光谱成像技术检测微小摄像头的可行性。  相似文献   

8.
《光学学报》2010,30(9)
提出了基于高光谱成像技术的猪肉嫩度检测方法。利用高光谱成像系统获取78个猪肉样本在400~1100nm范围的高光谱图像数据;通过主成分分析高光谱数据进行降维,从中优选出3幅特征图像,并从每幅特征图像中分别提取对比度、相关性、角二阶矩和一致性等4个基于灰度共生矩阵的纹理特征变量,这样每个样本共有12个特征变量,再通过主成分分析提取6个主成分变量,并参照剪切力方法测得的样本嫩度等级结果,利用神经网络方法构建猪肉嫩度等级判别模型。模型对校正集样本的回判率为96.15%,预测集样本的判别率为80.77%。研究表明高光谱图像技术可以用于猪肉嫩度等级水平的检测。  相似文献   

9.
梨在储藏、包装和运输等过程中均可能发生不同程度的机械损伤,若不及时剔除损伤梨,损伤可能会逐渐严重而演变成腐烂,造成严重的经济损失。为建立一种梨早期损伤检测及损伤时间评估的快速、无损检测方法,采用高光谱图像结合迁移学习模型对损伤早期水晶梨进行识别。以无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨为研究对象,应用高光谱成像系统采集样品的高光谱图像,共获取无损伤、挤压损伤24 h和挤压损伤48 h的水晶梨高光谱图像各80帧。对高光谱图像进行主成分分析,选择主成分图像4,5,6(PC4,PC5,PC6)作为检测水晶梨损伤的特征图像,将3个主成分图像拼接后进行数据扩充共得到无损伤、挤压损伤24 h和挤压损伤48 h的特征图像各160帧。按照9∶1比例划分样本训练集和测试集后,分别建立了支持向量机(SVM)、k-近邻(k-NN)和基于ResNet50网络的迁移学习损伤识别模型。SVM、k-NN和基于ResNet50网络的迁移学习模型对测试集样本总体识别准确率分别为83.33%,85.42%和93.75%,基于ResNet50网络的迁移学习模型识别效果最佳,其对测试集中无损伤、挤压损伤24 h和挤压损伤48 h的样本正确识别率分别达到100%,83%和95%。该研究结果表明,高光谱图像技术结合基于ResNet50网络的迁移学习模型可实现水晶梨早期损伤检测,并对损伤时间有较好的预测效果,且损伤时间越长,识别准确率越高。  相似文献   

10.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

11.
应用高光谱成像技术对打蜡苹果无损鉴别研究   总被引:3,自引:0,他引:3  
探讨应用高光谱成像技术快速无损鉴别不同苹果蜡的可行性。通过对分别打食用果蜡、工业蜡和未打蜡的126个苹果样品,采用380~1 024 nm范围的高光谱图像仪获取三类苹果的高光谱图像信息,采用ENVI软件处理平台提取高光谱图像中对象的漫反射光谱响应特性。从126个样品中随机取出84个样品建模,其余42个样品作为独立的验证集。对光谱数据分别采用偏最小二乘(PLS)、最小二乘支持向量机(LS-SVM)和BP神经网络等建立高光谱响应特征与食用蜡苹果、工业蜡苹果、未打蜡苹果的关系模型,比较不同建模方法的效果。结果表明:采用MSC-SPA-LS-SVM模型可以较好的区分食用果蜡、工业蜡和未打蜡的三类苹果,预测结果的正确率分别为100%,100%和92.86%。  相似文献   

12.
种子活力是种子质量的一项重要指标,高活力的种子具有较强的抗逆性、生长优势及生产潜力。而种子活力在种子生理成熟时最高,随后随着贮藏时间的延长而发生着自然不可逆的降低。因此,在播种前及时、准确地对种子活力进行检测和筛选具有重要的实践意义。针对传统种子活力检测方法存在的操作过程复杂繁琐、耗时长、重复性差且对种子有破坏性等缺点,研究尝试利用高光谱成像技术建立单粒小麦种子生活力快速、无损、精确的检测方法。以高温高湿老化后的190粒小麦种子(发芽128粒,不发芽62粒)作为研究样本,先利用可见-近红外(Vis-NIR)高光谱成像系统采集样本种子的光谱图像和进行标准发芽试验,并确保光谱采集试验和标准发芽试验的小麦种子一一对应。随后提取种子光谱图像的感兴趣区域并对其光谱数据进行平均和特征分析。分别采用一阶导数(FD)、均值中心化(MC)、正交信号校正(OSC)和多元散射校正(MSC)对原始光谱数据进行预处理,结合偏最小二乘辨别分析(PLS-DA)建立全波段PLS-DA模型,比较分析,并筛选出最适预处理方法。分别利用无信息变量消除算法(UVE)、竞争性自适应重加权算法(CARS)、连续投影算法(SPA)及耦合不同变量筛选方法对特征波段进行筛选提取,再分别基于所提取出的特征波段建立PLS-DA定性判别模型,对比分析,最终确立提取与单粒小麦种子生活力相关性最高的高光谱特征波段方法体系。结果表明:不同光谱预处理建立的模型其表现有所差异,在MC,FD,OSC和MSC中,采用MC对原始高光谱数据进行预处理,建立的全波段MC-PLS-DA判别模型,其校正集和预测集对小麦种子生活力的整体鉴别正确率分别为82.5%和83.0%,优于原始及其他预处理后建立的全波段PLS-DA判别模型,其校正集和预测集对小麦种子活种子鉴别正确率分别为94.8%和90.6%。进一步对比3种单特征波段提取方法及其耦合分析建模中,发现3种变量筛选方法耦合(UVE-CARS-SPA)的方式能够将光谱全波段的688个变量压缩至8个变量(473,492,811,829,875,880,947和969 nm),利用所筛选出的8个变量建立的MC-UVE-CARS-SPA-PLS-DA模型获得了最优秀的鉴别效果,其校正集和预测集对小麦种子生活力的整体鉴别正确率分别为86.7%和85.1%,较全波段模型(MC-Full-PLS-DA)分别提升了4.2%和2.1%,活种子的鉴别正确率分别为93.8%和84.4%,经过此优秀模型筛选后,种子批最终发芽率可达到93.1%。实验结果表明,基于高光谱成像技术结合UVE-CARS-SPA-PLS-DA模型能够实现对单粒小麦种子生活力的定性判别。研究工作为小麦种子活力的快速、精确且无损的检测提供理论支持。  相似文献   

13.
以高光谱数据有效预测苹果可溶性固形物含量   总被引:4,自引:0,他引:4  
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。  相似文献   

14.
针对基于逐像元处理的因果实时异常(Causal Real-time Relationship Reed-X Detector,CR-RRXD)检测算法计算量大,以及基于逐像元方式边检测边成像显示的时间过长而不能满足快速处理要求的缺陷,提出了一种基于逐行处理的CR-R-RXD检测算法.与基于逐像元处理的CR-R-RXD检测算法相比,该方法将高光谱图像整行像元向量作为输入,即处理一行高光谱数据只需计算一次,极大地减少了计算次数.实验结果表明,与R-RXD和基于逐像元处理的CR-R-RXD算法相比,本文算法可在获得与R-RXD算法几乎相同的检测准确度的情况下,实现快速实时处理,其检测准确度相较于基于逐像元处理的CR-R-RXD算法有所提高,且算法检测时间大大缩短,增强了算法的时效性.  相似文献   

15.
报道了地面长波红外遥测的新进展 ,具体阐述了窗扫时空调制傅里叶光谱成像技术的实现过程.演示装置基于角锥反射镜M ichelson干涉具 ,构成了空间调制干涉 ;采用了制冷型长波红外焦平面探测器组件 ,通过对数据立方体的采集、重组、基线校正、切趾、相位校正和傅里叶变换等处理 ,实现了长波红外波段高光谱成像.自研的CHIPED-1长波红外高光谱成像原理实验装置的探测灵敏度指标噪声等效辐射通量密度NESR在单次采样时达到了5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 ,与商品化时间调制干涉高光谱成像仪相当 ;反映了技术的先进性 ,并留有较大的改进空间.通过测试聚丙烯薄膜的透过率曲线 ,CHIPED-1红外高光谱成像原理实验装置的光谱响应范围达到了11. 5 μm.文章还以室外高楼和乙醚气体的探测实验为例 ,研究了二维分布化学气体VOC的高光谱成像探测方法.在复杂背景和低试验浓度情况下 ,从同一波数的红外光谱切片上 ,观察不出乙醚蒸气的存在 ,但是进行了差谱处理后 ,可以清楚看到乙醚蒸气的空间分布.高光谱方法应用在有机蒸气VOC的红外探测领域 ,相对于宽波段热成像方法 ,具有灵敏度高、抗干扰能力强和识别种类多等诸多优势.  相似文献   

16.
高光谱成像在水果内部品质无损检测中的研究进展   总被引:13,自引:0,他引:13  
随着高光谱成像技术的日趋成熟与高光谱成像硬件、软件成本的不断下降,以及高光谱图像数据处理算法的不断改进, 应用高光谱成像技术对水果品质进行无损检测成为当前研究热点之一。为了能跟踪国内外的最新研究成果, 对高光谱成像在水果内部品质(成熟度、坚实度、可溶性固形物、水分)检测研究进行综述,以期对我国相关研究人员的研究工作提供参考。  相似文献   

17.
超光谱成像是一种场景图谱合一的技术,在战场侦察中得到了迅速应用。超光谱成像系统的标定是确定其输出准确数值的过程。分析了一种基于背照减薄CCD和凹面光栅成像光谱部件的UV/Vis/NIR超光谱军用探测系统,其光谱分辨力为3.3 nm;探讨了0.25~1.1μm工作波段内超光谱成像系统的标定和评估方法,详细介绍了以带有测试靶均匀辐射源为对象的空间成像质量评估、以激光和Hg灯为基础的光谱质量评估以及利用高精度标准辐射源的辐射性能标定。在经过多步辐射校正和光谱真实性检测验证后,最终获得的景物反射率光谱曲线真实反映了光谱特性,满足了0.2mrad的空间分辨力和±0.5%色散线性率的精度要求并在军用探测系统中进行了反伪装的成功应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号