共查询到20条相似文献,搜索用时 78 毫秒
1.
The thermo‐responsiveness, swelling and mechanical properties of a series of novel poly(ester‐ether urethane) hydrogels have been investigated. These thermo‐sensitive hydrogels were obtained by combining hydrophobic biodegradable poly(ε‐caprolactone) diols and hydrophilic two‐, three‐ and four‐arm hydroxyl terminated poly(ethylene glycol) (PEG) of various molecular weights, using hexamethylene diisocyanate, dichloroethane as solvent and a tin‐based catalyst. The use of multifunctional PEGs leads to the formation of covalent crosslinking points allowing an additional control of the swelling capability. Thus, it was found that tuning the hydrophilic/hydrophobic balance and the crosslinking degree by changing the composition, the swelling and the thermo‐responsive behavior of these hydrogels could be modulated. The obtained hydrogels showed a volume transition at around room temperature. Therefore, and taking into account their biocompatibility, these hydrogels show promising properties for biomedical applications, such as drug delivery. Thus, the loading and release of diltiazem hydrochloride, an antihypertensive drug used as model, were investigated. These new PEG polyurethane hydrogels were able to incorporate a high amount of drug providing a sustained release after an initial burst effect. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
《Macromolecular bioscience》2017,17(4)
Stimuli‐responsive nanocarriers with the ability to respond to tumorous heterogeneity have been extensively developed for drug delivery. However, the premature release during blood circulation and insufficient intracellular drug release are still a significant issue. Herein, three disulfide bonds are introduced into the amphiphilic poly(ethylene glycol)‐polycaprolactone copolymer blocks to form triple‐sensitive cleavable polymeric nanocarrier (tri‐PESC NPs) to improve its sensitivity to narrow glutathione (GSH) concentration. The tri‐PESC NPs keep intact during blood circulation due to the limited cleaving of triple‐disulfide bonds, whereas the loaded drug is efficiently released at tumor cells with the increased concentration of GSH. In vitro studies of doxorubicin‐loaded tri‐PESC NPs show that the nanocarriers achieve sufficient drug release in cancerous cells and inhibit the tumor cells growth, though they only bring minimum damage to normal cells. Therefore, the tri‐PESC NPs with triple‐sensitive cleavable bonds hold great promise to improve the therapeutic index in cancer therapy.
3.
4.
Ring-opening polymerization of D,L-lactide was carried out in the presence of poly(ethylene glycol), using Zn powder as catalyst. The hydroxyl-capped PLA-PEG-PLA triblock copolymers were coupled with adipoyl chloride at different molar ratios under mild conditions. N-Dimethylaminopyridine (DMAP) was used as catalyst of the coupling reaction. The resulting PLA/PEG multiblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, SEC, and DSC. Sol-gel transition properties of the multiblock copolymers were investigated by mechanical rheology. The data showed that the sol-gel transition temperature and the transition modulus increased with increasing molecular weight and the solution concentration of the multiblock copolymers. [Graph: see text] Variation of storage modulus (G') and loss modulus (G') as a function of temperature for a 20% sample of MB3. 相似文献
5.
Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers
Wang N Dong A Tang H Van Kirk EA Johnson PA Murdoch WJ Radosz M Shen Y 《Macromolecular bioscience》2007,7(11):1187-1198
Poly(ethylene glycol) (PEG) is widely used as a water soluble carrier for polymer-drug conjugates. Herein, we report degradable linear PEG analogs (DPEGs) carrying multifunctional groups. The DPEGs were synthesized by a Michael addition based condensation polymerization of dithiols and PEG diacrylates (PEGDA) or dimethacrylates (PEGDMA). They were stable at pH 7.4 but quickly degraded at pH 6.0 and 5.0. Thus, DPEGs could be used as drug carriers without concern for their retention in the body. DPEGs could be made to carry such functional groups as terminal thiol or (meth)acrylate and pendant hydroxyl groups. The functional groups were used for conjugation of drugs and targeting groups. This new type of PEG analog will be useful for drug delivery and the PEGylation of biomolecules and colloidal particles. 相似文献
6.
Natascha Hotz Louisa Wilcke Wilfried Weber 《Macromolecular rapid communications》2013,34(20):1594-1610
A key feature of any living system is the ability to sense and react to the environmental stimuli. The biochemical characterization of the underlying biological sensors combined with advances in polymer chemistry has enabled the development of stimulus‐sensitive biohybrid materials that translate most diverse chemical and biological input into a precise change in material properties. In this review article, we first describe synthesis strategies of how biological and chemical polymers can functionally be interconnected. We then provide a comprehensive overview of how the different properties of biological sensor molecules such as competitive target binding and allosteric modulation can be harnessed to develop responsive materials with applications in tissue engineering and drug delivery.
7.
Narendra Vyavahare Joachim Kohn 《Journal of polymer science. Part A, Polymer chemistry》1994,32(7):1271-1281
A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L -lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64–88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc. 相似文献
8.
Ian Milligan Liye Fu Emily A. Franckowiak Prof. Wenjun Du 《Angewandte Chemie (International ed. in English)》2013,52(51):13699-13702
pH‐Responsive polymers have great potential in biomedical applications, including the selective delivery of preloaded drugs to tissues with low pH values. These polymers usually contain acid‐labile linkages such as esters and acetals/ketals. However, these linkages are only mildly pH‐responsive with relatively long half‐lives (t1/2). Orthoester linkages are more acid‐labile, but current methods suffer from synthetic challenges and are limited to the availability of monomers. To address these limitations, a sugar poly(orthoester) was synthesized as a highly pH‐responsive polymer. The synthesis was achieved by using 2,3,4‐tri‐O‐acetyl‐α‐D ‐glucopyranosyl bromide as a difunctional AB monomer and tetra‐n‐butylammonium iodide (TBAI) as an effective promoter. Under optimal conditions, polymers with molecular weights of 6.9 kDa were synthesized in a polycondensation manner. The synthesized glucose poly(orthoester), wherein all sugar units were connected through orthoester linkages, was highly pH‐responsive with a half‐life of 0.9, 0.6, and 0.2 hours at pH 6, 5, and 4, respectively. 相似文献
9.
The synthesis of N-substituted p-hydroxybenzoic amides using a liquid phase approach is described. Poly(ethylene glycol)(PEG) and p-hydroxybenzoic acid were linked by oxalyl chloride to give compound 1, which was chlorinated by thionyl chloride, followed by amidation with NHR^1R^2 to yield compound 3. Hydrolysis of compound 3 gave the title amide 4.These crude library members were obtained in good yields with high purities. 相似文献
10.
Lixia Ren Lihong He Tongchen Sun Xia Dong Yongming Chen Jin Huang Chun Wang 《Macromolecular bioscience》2009,9(9):902-910
Novel temperature and pH dual‐responsive hydrogels were constructed by inclusion of poly(PEGMA)‐co‐poly(DMA) with α‐cyclodextrin in aqueous solution. The temperature‐ or pH‐induced sol/gel transition in the hydrogels was completely reversible. Studies on structure/property relationships show that chain uniformity, graft density and copolymer concentration affect the hydrogel behavior. A dual‐responsive mechanism is proposed. The in vitro release of a model drug from this hydrogel was studied. It was found that the release kinetics were greatly accelerated at higher temperature and at acidic pH conditions, indicating potential applications in controlled drug delivery.
11.
Muriel Behra Stephan Schmidt Jürgen Hartmann Dmitry V. Volodkin Laura Hartmann 《Macromolecular rapid communications》2012,33(12):1049-1054
Porous poly(ethylene glycol) (PEG) microgels of both 17.6 and 8.3 μm in diameter are synthesized via hard templating with calcium carbonate (CaCO3) microparticles. The synthesis is performed in three steps: loading of PEG macromonomers into CaCO3 microparticles, crosslinking via photopolymerization, and removal of the CaCO3 template under acidic conditions. The resulting porous PEG microgels are inverse replicates of their templates as indicated by light microscopy, cryo‐scanning electron microscopy (cryo‐SEM), and permeability studies. Thus this process allows for the straightforward and highly reproducible synthesis of porous hydrogel particles of two different diameters and porosities that show great potential as carriers for drugs or nanomaterials. 相似文献
12.
G. Rajesh Krishnan Yuan Yuan Ayesha Arzumand Debanjan Sarkar 《Journal of polymer science. Part A, Polymer chemistry》2014,52(14):1917-1928
Poly(ethylene glycol) (PEG) end capped with biodegradable hydrophobic dipeptides shows versatile gelation behavior in a wide range of aqueous and organic solvents. This gelation characteristic is attributed to the aggregation of polymer chains induced by dipeptide end groups. Both PEG molecular weight and molecular structure of end groups control this aggregation by striking a balance between two opposing molecular interactions: solubility of the PEG segment which tends to dissolve the polymer while hydrophobic and intermolecular noncovalent interactions between the end groups induce aggregation. Morphologically, this aggregated structure forms interpenetrating nano sheets with characteristic microstructural features. These gels are biodegradable and possess physicomechanical characteristics suitable for biomedical applications. Furthermore, proteins and hydrophobic model drugs can be encapsulated within the gels from aqueous and organic solvents, respectively, and can be released in a controlled fashion which indicates the applicability of the gels as drug delivery vehicles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1917–1928 相似文献
13.
14.
Yasuhide Nakayama Takehisa Matsuda 《Journal of polymer science. Part A, Polymer chemistry》1993,31(13):3299-3305
This article reports a new fixation method for hydrophilic layers on substrates. The method is based on the photochemistry of the cinnamate group, which is capable of intermolecular dimerization upon ultraviolet (UV) light irradiation. The method used was as follows. First, two photoreactive polymers were sequentially coated on a polymeric surface: a polycinnamate as an adhesive layer and a cinnamated poly(ethylene glycol) (PEG) as a hydrophilic layer. Subsequently the surface was exposed to UV light. No delamination occurred upon washing with water and methanol; the photoreactive PEG was chemically bonded onto the surface via the polycinnamate. The higher the molecular weight of PEG, the higher the wettability of the surface was formed. Minimal cell adhesion was observed on such a surface. The biomedical applications of the method are discussed. © 1993 John Wiley & Sons, Inc. 相似文献
15.
Poly(ethylene glycol)(PEG)‐based interpenetrating polymeric network (IPN) hydrogels were prepared for the application of enzyme immobilization. Poly(acrylamide)(PAAm) was chosen as the other network of IPN hydrogel and different concentration of PAAm networks were incorporated inside the PEG hydrogel to improve the mechanical strength and provide functional groups that covalently bind the enzyme. Formation of IPN hydrogels was confirmed by observing the weight per cent gain of hydrogel after incorporation of PAAm network and by attenuated total reflectance/Fourier transform infrared (ATR/FTIR) analysis. Synthesis of IPN hydrogels with higher PAAm content produced more crosslinked hydrogels with lower water content (WC), smaller Mc and mesh size, which resulted in enhanced mechanical properties compared to the PEG hydrogel. The IPN hydrogels exhibited tensile strength between 0.2 and 1.2 MPa while retaining high levels of hydration (70–81% water). For enzyme immobilization, glucose oxidase (GOX) was immobilized to PEG and IPN hydrogel beads. Enzyme activity studies revealed that although all the hydrogels initially had similar enzymatic activity, enzyme‐immobilizing PEG hydrogels lost most of the enzymatic activity within 2 days due to enzyme leaching while IPN hydrogels maintained a maximum 80% of the initial enzymatic activity over a week due to the covalent linkage between the enzyme and amine groups of PAAm. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
Novel linear poly(NIPA‐co‐CL) copolymers have been synthesized by radical copolymerization of N‐isopropylacrylamide (NIPA) and 2‐methylene‐1,3‐dioxepane (MDO). The structure of copolymers was confirmed by 1H NMR and IR spectroscopy. Cross‐linked poly(NIPA‐co‐CL) hydrogels have also been prepared in toluene using N,N′‐methylenebisacrylamide as cross‐linking agent. The hydrogels thus obtained exhibit good temperature response and are biodegradable in the presence of proteinase K.
17.
Ekaterina Sokolovskaya Leonie Barner Stefan Brse Jrg Lahann 《Macromolecular rapid communications》2014,35(8):780-786
The synthesis of a novel photoreactive poly(ethylene glycol) (PEG)‐based polymer with caged carbonyl groups is reported. We further demonstrate its use for the on‐demand fabrication of hydrogels. For rapid gelation, a hydrazide‐functionalized PEG is used as the second component for the hydrogel preparation. The photoreactive PEG‐based polymer is designed for controlled cleavage of the protecting groups upon exposure to UV light releases free aldehyde moieties, which readily react with hydrazide groups in situ. This hydrogel system may find applications in controlled release drug delivery applications, when combined with in situ gelation. Furthermore, the possibility of forming gels specifically upon UV irradiation gives an opportunity for 3D fabrication of degradable scaffolds.
18.
Yoshinori Maeda Frederico Pittella Takahiro Nomoto Hiroyasu Takemoto Nobuhiro Nishiyama Kanjiro Miyata Kazunori Kataoka 《Macromolecular rapid communications》2014,35(13):1211-1215
For efficient delivery of siRNA into the cytoplasm, a smart block copolymer of poly(ethylene glycol) and charge‐conversion polymer (PEG‐CCP) is developed by introducing 2‐propionic‐3‐methylmaleic (PMM) amide as an anionic protective group into side chains of an endosome‐disrupting cationic polyaspartamide derivative. The PMM amide moiety is highly susceptible to acid hydrolysis, generating the parent cationic polyaspartamide derivative at endosomal acidic pH 5.5 more rapidly than a previously synthesized cis‐aconitic (ACO) amide control. The PMM‐based polymer is successfully integrated into a calcium phosphate (CaP) nanoparticle with siRNA, constructing PEGylated hybrid micelles (PMM micelles) having a sub‐100 nm size at extracellular neutral pH 7.4. Ultimately, PMM micelles achieve the significantly higher gene silencing efficiency in cultured cancer cells, compared to ACO control micelles, probably due to the efficient endosomal escape of the PMM micelles. Thus, it is demonstrated that fine‐tuning of acid‐labile structures in CCP improves the delivery performance of siRNA‐loaded nanocarriers.
19.
Synthesis and non‐isothermal crystallization kinetics of poly(ethylene terephthalate)‐co‐poly(propylene glycol) copolymers 下载免费PDF全文
Poly(ethylene terephthalate)‐co‐poly(propylene glycol) (PET‐co‐PPG) copolymers with PPG ratio ranging from 0 to 0.90 mol% were synthesized by the melt copolycondensation. The intrinsic viscosity, structure, non‐isothermal crystallization behavior, nucleation and spherulitic growth of the copolymers were investigated by Ubbelohde viscometer, Proton Nuclear Magnetic Resonance (1H‐NMR), differential scanning calorimetry, and polarized optical microscopy, respectively. The non‐isothermal crystallization process of the copolymers was analyzed by Avrami, Ozawa, Mo's, Kissinger, and Dobreva methods, respectively. The results showed that the crystallizability of PET was apparently enhanced with incorporating a small amount of PPG, which first rose and then reduced with increasing amount of PPG in the copolymers at a given cooling rate. The crystallization mechanism was a three‐dimensional growth with both instantaneous and sporadic nucleation. Particularly, PET‐co‐PPG containing 0.60 mol% PPG exhibited the highest crystallizability among all the copolymers. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Chee-Youb Won Chih-Chang Chu Jong Doo Lee 《Journal of polymer science. Part A, Polymer chemistry》1998,36(16):2949-2959
The melt polycondensation reaction of the prepolymer prepared from N-(benzyloxycarbonyl)-L -aspartic acid anhydride (N-CBz-L -aspartic acid anhydride) and low molecular weight poly(ethylene glycol) (PEG) using titanium isopropoxide (TIP) as a catalyst produced the new biodegradable poly(L -aspartic acid-co-PEG). This new copolymer had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the preparation of the prepolymer were obtained by using a 0.12 mol % of p-toluenesulfonic acid with PEG 200 for 48 h. The weight-average molecular weight of the prepolymer increased from 1,290 to 31,700 upon melt polycondensation for 6 h at 130°C under vacuum using 0.5 wt % TIP as a catalyst. The synthesized monomer, prepolymer, and copolymer were characterized by FTIR, 1H- and 13C-NMR, and UV spectrophotometers. Thermal properties of the prepolymer and the protected copolymer were measured by DSC. The glass transition temperature (Tg) of the prepolymer shifted to a significantly higher temperature with increasing molecular weight via melt polycondensation reaction, and no melting temperature was observed. The in vitro hydrolytic degradation of these poly(L -aspartic acid-co-PEG) was measured in terms of molecular weight loss at different times and pHs at 37°C. This pH-dependent molecular weight loss was due to a simple hydrolysis of the backbone ester linkages and was characterized by more rapid rates of hydrolysis at an alkaline pH. These new biodegradable poly(L -aspartic acid-co-PEG)s may have potential applications in the biomedical field. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2949–2959, 1998 相似文献