首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Singh  Manoj K.  Hashmi  S. A. 《Ionics》2017,23(10):2931-2942

We report the studies on quasi-solid battery-supercapacitor (BatCap) systems fabricated using sol–gel-prepared LiFePO4 and its composites (LACs) with activated charcoal (AC) as hybrid cathode and Li4Ti5O12 powder as anode separator by flexible gel polymer electrolyte (GPE) film. The GPE film comprises 1.0 M lithium trifluoromethane sulfonate (LiTf) solution in ethylene carbonate (EC)–propylene carbonate (PC) mixture, immobilized poly(vinylidene fluoride-co-hexafluoro-propylene) (PVdF-HFP), which is of high ionic conductivity (∼3.8 × 10−3 S cm−1 at 25 °C) and electrochemical stability window (∼3 V). The effect of the addition of AC in composite electrode LACs has been analyzed using various techniques such as X-ray diffraction, porosity analysis, and electrochemical methods. The interfaces of composite LACs and GPE film not only offer high rate performance but also show high specific energy (>27.8 Wh kg−1) as compared to the symmetric supercapacitors and pristine lithium iron phosphate (LiFePO4)-based lithium ion batteries. The full BatCap systems have been characterized by cyclic voltammetry and galvanostatic charge–discharge tests. The BatCap systems with composite electrodes (LACs) offer better cyclic performance as compared to that of pristine LiFePO4-based BatCap or LIB LiFePO4/Li4Ti5O12.

  相似文献   

2.
Gel polymer electrolyte (GPE) films comprising of poly(vinylidenefluoride), propylene carbonate, ethylene carbonate and zinc trifluoromethane sulfonate are prepared and characterized. The composition of GPE is optimized to contain minimum liquid components with a maximum specific conductivity of 3.94×10−3 S cm−1 at (25±1) °C. A detailed investigation on the properties such as ionic conductivity, transport number, electrochemical stability window, reversibility of Zn/Zn2+ couple and Zn/gel electrolyte interfacial stability have been carried out. The ionic conductivity follows a VTF behaviour with an activation energy of about 0.0014 eV. Cationic transport number varies from 0.51 at 25 °C to 0.18 at 70 °C. Several cells have been assembled with GPE as the electrolyte, zinc as the anode, γ-MnO2 as the cathode and their charge–discharge behaviour followed. Capacity values of 105, 82, 64 and 37 mAh/g of MnO2 have been achieved at 10, 50, 100 and 200 μA/cm2 discharge current densities, respectively. The discharge capacity values are almost constant for about 55 cycles for all values of current densities. Cyclic voltammetric study of MnO2 electrode in Zn/GPE/MnO2 cell clearly shows intercalation/deintercalation of Zn2+.  相似文献   

3.
《Solid State Ionics》2006,177(33-34):2979-2985
Electrochemical redox supercapacitors have been fabricated using polymeric gel electrolytes polyvinylidene fluoride co-hexafluoropropylene (PVdF-HFP)–ethylene carbonate (EC)–propylene carbonate (PC)–MClO4: M = Li, Na, (C2H5)4N and electrochemically deposited polypyrrole as conducting polymer electrode. The performance of the capacitors have been characterized using a.c impedance spectroscopy, cyclic linear sweep voltammetry and galvanostatic charge–discharge techniques. The capacitors shows larger values of overall capacitance of about 14–25 mF cm 2 (equivalent to a single electrode specific capacitance of 78–137 F g 1 of polypyrrole), which corresponds to the energy density of 11–19 W h kg 1 and power density of 0.22–0.44 kW kg 1. The values of capacitance have been found to be almost stable up to 5000 cycles and even more. A comparison indicates that the capacitive behaviour and the capacitance values are not much affected with the size of cations of the salts incorporated in gel electrolytes, rather predominant role of anions is possible at the electrode–electrolyte interfaces. Furthermore the coulombic efficiencies of all the cells were found to be nearly 100% that is comparable to the liquid electrolytes based capacitors.  相似文献   

4.
《Solid State Ionics》2006,177(9-10):843-846
We have synthesized poly(ethylene glycol) (PEG)-aluminate ester as a plasticizer for solid polymer electrolytes. The thermal stability, ionic conductivity and electrochemical stability of the polymer electrolyte which consist of poly(ethylene oxide) (PEO)-based copolymer, PEG–aluminate ester and lithium bis-trifluoromethanesulfonimide (LiTFSI) were investigated. Addition of PEG–aluminate ester increased the ionic conductivity of the polymer electrolyte, showing greater than 10 4 S cm 1 at 30 °C. The polymer electrolyte containing PEG–aluminate ester retained thermal stability of the non-additive polymer electrolyte and exhibited electrochemical stability up to 4.5 V vs. Li+/Li at 30 °C.  相似文献   

5.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

6.
Biodegradable polymer electrolyte comprising the blend of chitosan (CS) and poly(ethylene glycol) (PEG) plasticized with ethylene carbonate and propylene carbonate, as host polymer, and lithium perchlorate (LiClO4), as a dopant, was prepared by solution casting technique. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The variation of conductivity and dielectric properties has been investigated as a function of polymer blend ratio, plasticizer content and LiClO4 concentration at temperature range of 298–343 K. The DSC thermograms show two broad peaks for CS/PEG blend and increased with increase in the LiClO4 content. The maximum conductivity has been found to be 1.1?×?10?4 S cm?1 at room temperature for 70:30 (CS/PEG) concentration. The electric modulus of the electrolyte film exhibits a long tail feature indicative of good capacitance. The activation energy of all samples was calculated using the Arrhenius plot, and it has been found to be 0.12 to 0.38 eV. A carbon–carbon supercapacitor has been fabricated using this electrolyte, and its electrochemical characteristics and performance have been studied. The supercapacitor showed a fairly good specific capacitance of 47 F?g?1.  相似文献   

7.
Kumar  Rajiv  Arora  Narinder  Sharma  Shuchi  Dhiman  Naresh  Pathak  Dinesh 《Ionics》2017,23(10):2761-2766

Nano-composite polymer gel electrolytes were synthesized by using polyethylene oxide (PEO), ammonium tetrafluoroborate (NH4BF4), fumed silica (SiO2), dimethylacetamide (DMA), ethylene carbonate (EC), and propylene carbonate (PC) and characterized by conductivity studies. The effect of donor number of solvent on ionic conductivity of polymer gel electrolytes has been studied. The mechanical strength of the gel electrolytes has been increased with the addition of nano-sized fumed silica along with an enhancement in conductivity. Maximum room temperature ionic conductivity of 2.63 × 10−3 and 2.92 × 10−3 S/cm has been observed for nano-composite gel electrolytes containing 0.1 and 0.5 wt% SiO2 in DMA+1 M NH4BF4+10 wt% PEO, respectively. Nano-composite polymer gel electrolytes having DMA have been found to be thermally and electrically stable over 0 to 90 °C temperature range. Also, the change in conductivity with the passage of time is very small, which may be desirable to make applicable for various smart devices.

  相似文献   

8.
The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10−6 S cm−1 and this value was increased to 7.43×10−5 S cm−1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.  相似文献   

9.
Hybrid solid polymer electrolyte films comprising of poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), LiClO4, and propylene carbonate are prepared by solution casting technique by varying the salt concentration. In this study, PVAc/PMMA polymer blend ratio is fixed as 25:75 on the basis of conductivity and mechanical stability of the film. X-ray diffraction, Fourier transform infrared impedance, thermogravimetry/differential thermal analysis and scanning electron microscopy studies are carried out for the polymer electrolytes. The maximum ionic conductivity is found to be 4.511 × 10−4 S cm−1 at 303 K for the plasticized polymer electrolyte with 8 wt.% of LiClO4. The ionic conductivity is found to decrease with an increase of LiClO4 concentration.  相似文献   

10.
《Solid State Ionics》2006,177(11-12):1091-1097
The effects of compositions on properties of PEO/KI/I2 salts polymer electrolytes were investigated to optimize the photovoltaic performance of solid state DSSCs. XRD pattern for the mole ratio 12:1 of [EO:KI] was showed the formation of complete amorphous complex. DSC results also confirmed the amorphous nature of the polymer electrolyte. The highest value of ionic conductivity is 8.36 × 10 5 S/cm at 303 K (ambient temperature) and 2.32 × 10 4 S/cm at 333 K (moderate temperature) for the mole ratio 12:1 of EO:KI complex. The effect of contribution of [I] and [I3] concentration with conductivity were also evaluated. FTIR spectrum reveals that the alkali metal cations were co-ordinated to ether oxygen of PEO. The formation of polyiodide ions, such as symmetric I3 (114 cm 1) and I5 (145 cm 1) caused by the addition of iodine was confirmed by FT Raman spectroscopic measurements. The optimum composition of PEO–KI–I2 polymer electrolyte system for higher conductivity at ambient and moderate temperatures was reported. A linear Arrhenius type behaviour was observed for all the PEO–KI polymer complexes. Transport number measurements were carried out for several polymer electrolyte compositions. Dye-sensitized solar cells were fabricated by using higher conductivity polymer electrolyte compositions and its photoelectrochemical performance was investigated. The fill factor, short-circuit current, photovoltage and energy conversion efficiency of the DSSC assembled with optimized electrolyte composition were calculated to be 0.563, 6.124 mA/cm2, 593 mV and 2.044% respectively.  相似文献   

11.
《Current Applied Physics》2010,10(5):1255-1260
A new type of inorganic–organic hybrid solid state polymer electrolyte consisting of heteropolytungsticacid impregnated polyepichlorohydrin with iodine/iodide and TiO2 nanofiller have been prepared for their potential application in dye sensitized solar cells. The prepared polymer electrolytes were well characterized by FT-IR, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Electrochemical Impedance analysis (EIS) and Thermal analysis (TGA). The prepared polymer electrolyte with TiO2 nanofiller shows reasonable ionic conductivity (20.4 × 10−6 S cm−1) compared to pure polyepichlorohydrin (2.0 × 10−9 S cm−1) at ambient temperature. The presence of negatively charged redox species heteropolytungsticacid in the polymer matrix prevents the photo reduction of iodide (back electron transfer) and the presence of TiO2 nanofiller increases the degree of amorphousity of the polymer which in turn prolongs the stability of the fabricated dye sensitized solar cell over a long period compared to bare polymer electrolyte.  相似文献   

12.
Vignarooban  K.  Badami  P.  Dissanayake  M. A. K. L.  Ravirajan  P.  Kannan  A. M. 《Ionics》2017,23(10):2817-2822

Research and development activities on sodium-ion batteries are becoming prominent in the past few years. Compared to lithium-based batteries, the sodium-based batteries will be cheaper because of the abundancy of sodium raw materials in the earth’s crust and also in seawater. In the current study, we synthesized and characterized poly-acrylonitrile (PAN)-based gel-polymer electrolytes formed with NaClO4 and dissolved in ethylene carbonate (EC) and propylene carbonate (PC). By systematically varying the weight ratios of polymer, salt, and the solvents, we obtained an optimum room temperature ionic conductivity of 4.5 mS cm−1 for the composition 11PAN-12NaClO4-40EC-37PC (wt.%), which is reasonably good for practical applications. This value of conductivity is comparable to a few other Na+ ion conducting gel-polymer electrolyte systems studied in the recent past. Variation of ionic conductivity with inverse temperature showed Arrhenius behavior. Activation energies estimated for all the samples showed only a slight variation suggesting that a single activation process which depends on the EC/PC co-solvent governs the ionic mobility in these gel-polymer electrolytes. Thermo-gravimetric analysis (TGA) revealed that there is no noticeable weight loss of these electrolytes up to 100 °C and hence the electrolytes are thermally stable for operating temperatures up to 100 °C.

  相似文献   

13.
The biopolymer of a Bacto agar-based gel polymer electrolyte (GPE) was prepared by addition of NaI and I2 as redox couple. The prepared GPE was characterized using impedance spectroscopy and X-ray diffraction (XRD) in order to determine its electrical and structural properties, respectively. An optimized ionic conductivity of 12.41 × 10−4 S cm−1 was achieved for the samples containing 1.6 M NaI and 50 μL I2. Meanwhile, XRD revealed that the addition of NaI and I2 altered agar properties and formed an amorphous structure. Linear sweep voltammetry showed that the electrochemical stability window of the sample had a working voltage of 2.0 V.  相似文献   

14.

Solid polymer electrolytes (SPEs) based on polyethylene oxide (PEO) complexed with magnesium triflate Mg(Tf)2 or Mg(CF3SO3)2) and incorporating the ionic liquid (IL) (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI)) were prepared by solution cast technique. The electrolyte was optimized and characterized using electrical conductivity, cationic transport number measurements, and cyclic voltammetry. The highest conductivity of the PEO/Mg(Tf)2, 15:1 (molar ratio), electrolyte at room temperature was 1.19 × 10−4 S cm−1 and this was increased to 3.66 × 10−4 S cm−1 with the addition of 10 wt.% ionic liquid. A significant increase in the Mg2+ ion transport number was observed with increasing content of the ionic liquid in the PEO-Mg(Tf)2 electrolyte. The maximum Mg2+ ion transport number obtained was 0.40 at the optimized electrolyte composition. A battery of the configuration Mg/ and [(PEO)15:Mg(Tf)2+10%IL]/TiO2-C was assembled and characterized. Preliminary studies showed that the discharge capacity of the battery was 45 mA h g−1.

  相似文献   

15.
The plasticized polymer electrolyte composed of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymer, the mixture of ethylene carbonate and propylene carbonate as plasticizer, and LiCF3SO3 as a salt was studied. The effect of the PVC-to-PVdF blend ratio with the fixed plasticizer and salt content on the ionic conduction was investigated. The electrolyte films reveal a phase-separated morphology due to immiscibility of the PVC with plasticizer. Among the three blend ratios studied, 3:7 PVC–PVdF blend ratio has shown enhanced ionic conductivity of 1.47 × 10−5 S cm−1 at ambient temperature, i.e., the ionic conductivity decreased with increasing PVC-to-PVdF ratio and increased with increasing temperature. A temperature dependency on ionic conductivity obeys the Arrhenius behavior. The melting endotherms corresponding to vinylidene (VdF) crystalline phases are observed in thermal analysis. Thermal study reveals the different levels of uptake of plasticizer by VdF crystallites. The decrease in amorphousity with increase in PVC in X-ray diffraction studies and larger pore size appearance for higher content of PVC in scanning electron microscopy images support the ionic conductivity variations with increase in blend ratios.  相似文献   

16.
Gel polymer electrolytes (GPE) obtained by immobilizing a solution of zinc triflate (ZnTr) in an ionic liquid, namely 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [emim][Tf2N] within a biodegradable polymeric matrix of poly-ε-caprolactone (PCL) were prepared by a simple solvent cast technique for different concentrations of the ionic liquid. The electrolyte with the composition 75 wt% PCL: 25 wt% ZnTr+100 wt% [emim][Tf2N] showed the highest ionic conductivity of 1.1×10−4 S cm−1 at 25 °C and favored by the rich amorphous phase of the GPE as confirmed from room temperature X-ray diffraction analysis (XRD). The morphology of the GPE was examined using scanning electron microscopy (SEM) which revealed the homogeneity of the prepared GPE system. The temperature dependence of electrical conductivity of the GPE followed the Arrhenius behavior. The Zn2+ ionic transport number has been determined to be ~0.62 which denotes the predominant contribution of zinc ion towards total ionic conductivity. The electrochemical stability window of GPE is found to be 2.5 V with a thermal stability upto 200 °C. This eco-friendly and safe electrolyte may be used to fabricate compostable batteries, in future, with a suitable selection of other components of the battery system.  相似文献   

17.
《Solid State Ionics》2006,177(15-16):1281-1286
Composite electrolyte comprising phosphotungstic acid (PWA) filler and 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF4) room temperature ionic liquid (RTIL) in poly(2-hydroxyethyl methacrylate) (PHEMA) matrix has been prepared. The polymer matrix was formed by free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) monomers. BMImBF4 was used as both ionic source and plasticizer, and PWA filler provided the proton conductivity in this system. The interactions and structure changes of the PHEMA-RTIL-PWA composites were investigated by Fourier transform infrared spectra, differential scanning calorimetry, and X-ray diffraction. PWA fillers maintained their Keggin structure within a limited range and enhanced the ionic conductivity of the composite electrolyte. The electrolyte with PWA at the 2 wt.% showed the highest ionic conductivity of 8 × 10 4 S cm 1 at room temperature and 96% relative humidity.  相似文献   

18.
Hema  M.  Tamilselvi  P.  Hirankumar  G. 《Ionics》2017,23(10):2707-2714

In recent years, solid polymer electrolytes have been extensively studied due to its flexibility, electrochemical stability, safety, and long life for its applications in various electrochemical devices. Interaction of LiCF3SO3 and TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20—system-A possessing σ ~ 2.8 × 10−7 Scm−1 at 303 K) blend polymer electrolyte have been analyzed in the present study. LiCF3SO3 has been doped in system-A, and the optimized LiCF3SO3 doped sample (80:20:15-system-B possessing σ ~ 2.7 × 10−3 Scm−1 at 303 K) has been identified. The effect of different concentration of TiO2 in system-B has been analyzed and the optimized system is considered as system-C (σ ~ 3.7 × 10−3 Scm−1 at 303 K). The cost effective, solution casting technique has been used for the preparation of the above polymer electrolytes. Vibrational, structural, mechanical, conductivity, thermal, and electrochemical properties have been studied using FTIR, XRD, stress-strain, AC impedance spectroscopic technique, DSC and TGA, LSV, and CV respectively to find out the optimized system. System-C possessing the highest ionic conductivity, higher tensile strength, low crystallinity, high thermal stability, and high electrochemical stability (greater than 5 V vs Li/Li+) is well suitable for lithium ion battery application.

  相似文献   

19.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

20.
Boopathi  G.  Pugalendhi  S.  Selvasekarapandian  S .  Premalatha  M.  Monisha  S.  Aristatil  G. 《Ionics》2017,23(10):2781-2790

A proton-conducting polymer electrolyte based on agar and ammonium nitrate (NH4NO3) has been prepared through solution casting technique. The prepared polymer electrolytes were characterized by impedance spectroscopy, X-ray diffraction, and Fourier transform infra-red spectroscopy. Impedance analysis shows that sample with 60 wt.% NH4NO3 has the highest ionic conductivity of 6.57 × 10−4 S cm−1 at room temperature. As a function of temperature, the ionic conductivity exhibits an Arrhenius behaviour increasing from 6.57 × 10−4 S cm−1 at room temperature to 1.09 × 10−3 S cm−1 at 70 °C. Transport parameters of the samples were calculated using Wagner’s polarization method and thus shows that the increase in conductivity is due to the increase in the number of mobile ions. Fuel cell has been constructed with the highest proton conductivity polymer 40agar/60NH4NO3 and the open circuit voltage is found to be 558 mV.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号