首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.  相似文献   

2.
The effect of pressure on the dinuclear spin crossover material [{Fe(bpp)(NCS)(2)}(2)(4,4'-bipy)]·2MeOH (where bpp = 2,6-bis(pyrazol-3-yl)pyridine and 4,4'-bipy = 4,4'-bipyridine, 1) has been investigated with single crystal X-ray diffraction and Raman spectroscopy using diamond anvil cell techniques. The very gradual pressure-induced spin crossover occurs between 7 and 25 kbar, and shows no evidence of crystallographic phase transitions. The pressure-induced spin transition leads to a complete LS state which is not thermally accessible. This structural evolution under pressure is in stark contrast to the previously reported thermal spin crossover behaviour, in which a symmetry-breaking, purely structural phase transition results in only partial conversion to the low spin state. This observation is attributed to the symmetry-breaking phase transition becoming unfavourable under pressure.  相似文献   

3.
《Chemical physics letters》1987,139(5):470-474
The5T21A1 spin transition in [Fe(bpp)2][BF4]2 (bpp = 2,6-bis(pyrazol-3-yl)pyridine) is abrupt and complete and shows hysteresis with the transition temperatures Tc↓ = 173 K and Tc↑ = 183 K. Rapid cooling of the sample causes the freezing-in of metastable quintet state species at low temperatures. Relaxation of the metastable quintet to singlet state species within the range 99–114 K follows simple first-order kinetics with an activation energy Ea = 19.5 kJ mol−1.  相似文献   

4.
Two new spin crossover complexes [FeL(py)(2)] (1) and [FeL(DMAP)(2)] (2) with L being a tetradentate N(2)O(2)(2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N',O(2),O(2)'], py = pyridine and DMAP = p-dimethylaminopyridine have been investigated using temperature-dependent susceptibility and thermogravimetric and photomagnetic measurements as well as M?ssbauer spectroscopy and X-ray structure analysis. Both complexes show a cooperative spin transition with an approximately 9 K wide thermal hysteresis loop in the case of 2 (T(1/2) upward arrow = 183 K and T(1/2) downward arrow = 174 K) and an approximately 2 K wide thermal hysteresis loop in the case of the pyridine diadduct 1 (T(1/2) upward arrow = 191 K and T(1/2) downward arrow = 189 K). The spin transition was additionally followed by different temperature-scanning calorimetry and M?ssbauer spectroscopy for 2, and a good agreement for the transition temperatures obtained with the different methods was found. Results from X-ray structure analysis indicate that the cooperative interactions are due to elastic interactions in both compounds. They are more pronounced in the case of 2 with very short intermolecular iron-iron distances of 7.2 A and several intense C-C contacts. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bit of the equatorial ligand, from 108 degrees in the high-spin state to 90 degrees in the low-spin state. The reflectivity measurements of both compounds give at low temperature indication that at the sample surface the light-induced excited spin state trapping (LIESST) effect occurs. In bulk condition using a SQUID magnetometer the complex 2 displays some photomagnetic properties with an photoexcitation level of 60% and a T(LIESST) value of 53 K.  相似文献   

5.
The Ru(II) complexes [Ru(bpp)(dcbpy)Cl](+) (1), [Ru(tcbpp)(bpy)Cl](+) (2), and [Ru(tc'bpp)(bpy)Cl](+) (3) (bpp = 2,6-bis(N-pyrazolyl)pyridine, dcbpy = 4,4'-dicarboxyl-bipyridine, bpy = bipyridine, tcbpp = 4-carboxyl-2,6-bis(2-carboxyl-N-pyrazolyl)pyridine, tc'bpp = 4-carboxyl-2,6-bis(4-carboxyl-N-pyrazolyl)pyridine) are studied theoretically using density functional theory (DFT) techniques to explore their properties as dye in a solar cell. The calculated geometry structure and absorption spectrum of 1 are consistent with its experimental results. The calculation results indicate which sites the COOH groups attach to can significantly influence the electronic structure of the complex. By migrating the COOH groups from the bpy ligand in 1 to bpp ligand in 2 and 3, the nature of LUMO changes from bpy-localized to bpp dominated. The calculated low-lying absorptions at λ > 370 nm of the three complexes are categorized as metal-to-ligand charge-transfer (MLCT) transitions and the transition terminates at the orbital populated by the COOH appended ligand. The atomic spin density analysis also indicates that the ligand which is modified by the COOH groups is the ideal spot for the captured electron to situate. It can be predicted that the performance of 2 and 3 in the dye-sensitized solar cell can be enhanced as compared with 1.  相似文献   

6.
A dual‐function material in which ferroelectricity and spin crossover coexist in the same temperature range has been obtained. Our synthetic strategy allows the construction of acentric crystal structures in a predictable way and is based on the high directionality of hydrogen bonds. The well‐known iron(II) spin crossover complex [Fe(bpp)2]2+ (bpp=2,6‐bis(pyrazol‐3‐yl)pyridine), a four‐fold noncentrosymmetric H‐bond donor, was combined with a disymmetric H‐bond acceptor such as the isonicotinate (isonic) anion to afford [Fe(bpp)2](isonic)2⋅2 H2O. This low‐spin iron(II) compound crystallizes in the acentric nonpolar I space group and shows piezoelectricity and SHG properties. Upon dehydration, it undergoes a single‐crystal to single‐crystal structural rearrangement to a monoclinic polar Pc phase that is ferroelectric and exhibits spin crossover.  相似文献   

7.
《Polyhedron》2003,22(14-17):2375-2380
Iron (II), cobalt (II) and nickel (II) complexes of 2,6-bis(pyrazol-3-yl)pyridine (bpp) with [Cr(C2O4)3]3− have been prepared. They were characterised by single-crystal X-ray diffraction, magnetic susceptibility measurements and thermal gravimetric analyses. All three compounds are isostructural and they are formed by isolated [MII(bpp)2]2+ and [Cr(C2O4)3]3− complexes and free ClO4 . As expected, only the salt [Fe(bpp)2]2[Cr(C2O4)3]ClO4·5H2O shows a thermal spin transition with transition temperature (T1/2) around 375 K that is correlated to the loss of water molecules.  相似文献   

8.
A three-dimensional homometallic complex [Co(5)(mu(3)-OH)(2)(btec)(2)(bpp)](n) is built from the mixed hydroxide/carboxylate bridged cobalt(ii) chains linked by the 1,2,4,5-benzenetetracarboxylate (btec(4-)) anion and 1,3-bis(4-pyridyl)-propane molecule (bpp). Within each chain, two mu(3)-OH-bridged metal triangles connect to each other by sharing a common vertex to give rise to a bow-tie type Co(5)(mu(3)-OH)(2) subunit, which is joined to adjacent subunits by four mu(1,1)-carboxylate bridges to form a step-like metal-oxygen backbone. The magnetic studies revealed that the coexistence of ferromagnetic and antiferrimagnetic interactions resulted in a ferrimagnetic-like behavior of the homometallic chains. Below a critical temperature (T(N) = 12.5 K), bulk antiferromagnetic ordering was observed at low field due to the weak interchain antiferromagnetic interactions. A metamagnetic transition occurred at a magnetic field of ca. 5 kOe at 2 K.  相似文献   

9.
Tris(bipyridine)ruthenium(II) is used as a templating agent to insert palladium(II) into three-dimensional oxalate-based networks. The templated-assembly of [Ru(bpy)(3)][Pd(2)(ox)(3)] (Pd(2)) and [Ru(bpy)(3)][PdMn(ox)(3)] (PdMn) is described. The latter compound is structurally characterized by powder X-ray diffraction and X-ray absorption spectroscopy. These techniques reveal an unusual 6-fold oxygen environment around the Pd(II) atoms with two short (2.02 Angstrom) and four long (2.17 Angstrom) Pd-O distances. As stated by magnetometry, this environment is associated with a triplet ground state (S = 1) of the palladium(II) ion: when the temperature is decreased, the chiMT product shows a monotonous decrease from 5.54 cm(3) K mol(-1) at 300 K, a value which is slightly lower than the one expected for independent paramagnetic Pd(II) (S = 1, g = 2) and Mn(II) (S = 5/2, g = 2) ions. This thermal variation is due to antiferromagnetic exchange interactions between the two spin bearers. Nevertheless, no long-range magnetic order is detected down to 2 K. These results are confirmed by an analysis of the [MII(C(2)O(4))(3)](4-) (M = Ni, Pd, Pt) complex and of a [Pd(II){mu-(C(2)O(4))Mn(II)(OH(2))(4)}(3)](2+) tetranuclear model using density functional theory.  相似文献   

10.
Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.  相似文献   

11.
A 2D iron(II) spin crossover complex, [FeII(HLH,Me)2](ClO4)2.1.5MeCN (1), was synthesized, where HLH,Me = imidazol-4-yl-methylidene-8-amino-2-methylquinoline. 1 showed a gradual spin transition between the HS (S = 2) and LS (S = 0) states from 180 to 325 K within the first warming run from 5 to 350 K, in which 1.5MeCN is removed, and there was an abrupt spin transition at T1/2 downward arrow = 174 K in the first cooling run from 350 to 5 K. Following the first cycle, the compound showed an abrupt spin transition at T1/2 upward arrow = 185 K and T1/2 downward arrow = 174 K with 11 K wide hysteresis in the second cycle. The crystal structures of 1 were determined at 296 (an intermediate between the HS and LS states) and 150 K (LS state). The structure consists of a 2D extended structure constructed of both the bifurcated NH...O- hydrogen bonds between two ClO4- ions and two neighboring imidazole NH groups of the [FeII(HLH,Me)2]2+ cations and the pi-pi interactions between the two quinolyl rings of the two adjacent cations. Thermogravimetric analysis showed that solvent molecules are gradually eliminated even at room temperature and completely removed at 369 K. Desolvated complex 1' showed an abrupt spin transition at T1/2 upward arrow = 180 K and T1/2 downward arrow = 174 K with 6 K wide hysteresis.  相似文献   

12.
The thermal and light induced spin transition in [Fe(0.35)Ni(0.65)(mtz)(6)](ClO(4))(2) (mtz = 1-methyl-1H-tetrazole) was studied by (57)Fe M?ssbauer spectroscopy and magnetic susceptibility measurements. In addition to the spin transition of the iron(II) complexes the compound undergoes a structural phase transition. The high-temperature structure could be determined by X-ray crystallography of the isomorphous [Fe(0.25)Ni(0.75)(mtz)(6)](ClO(4))(2) complex at room temperature. The X-ray structural analysis shows this complex to be rhombohedric, space group R&thremacr;, with a = 10.865(2) ? and c = 23.65(1) ? with three molecules in the unit cell. The transition to the low-temperature structure occurs at approximately 60 K without changing the spin state of the molecules. By subsequent heating of the complex the high-temperature structure is reached again between ca. 170 and 200 K. The spin transition behavior is strongly influenced by the structural changes, and the observed spin transition curves are completely different for the high- and low-temperature phases. In the high-temperature structure a complete and gradual spin transition between 220 and 120 K (T(1/2)(gamma(HS) = 0.5) = 185 K) is detected; the high-spin (HS) state is represented by one HS doublet in the M?ssbauer spectra. In the low-temperature structure a two-step transition curve is detected in the heating mode. About 36% of the molecules show a LS (low-spin) --> HS transition between ca 50 and 75 K. Then the HS fraction stays constant up to 150 K. A further increase in the high-spin fraction is observed at temperatures above 150 K. In this structural phase the HS state is represented by two different HS doublets in the M?ssbauer spectra. The formation of metastable HS states by making use of the LIESST effect is only possible in the low-temperature structure. By excitation of the LS molecules with green light, two different HS states are populated which show very different relaxation behavior. One HS state shows a relaxation to the LS state even at 10 K; the other HS state shows a very slow HS --> LS relaxation at 60 K (within days), leading to the HS fraction corresponding to the thermal equilibrium value.  相似文献   

13.
The crystal structure of [Fe(bt)2(NCS)2] (A) was determined by X-ray diffraction at 293 and at 150 K in order to analyze the structural changes associated with the spin transition. The space group is P1 with Z = 2 at both temperatures. Lattice constants are as follows: a = 8.5240(4), b = 11.0730(6), c = 12.5300(8) at 293 K and a = 8.1490(4), b = 11.4390(5), c = 12.1270(6) at 150 K. The iron(II) atom lies at the center of a distorted [FeN6] defined by two bt ligands arranged in a cis conformation. The two remaining coordination positions are occupied by two isothiocyanate anions. The average bond lengths of 2.159(4) A (293 K) and 1.951(2) A (150 K) clearly indicate the change in spin configuration. The trigonal distortion parameter phi has a value of 9.6 degrees and 5.5 degrees at 293 and 150 K, respectively. For A, DeltaV = DeltaV(SCO) = 28 A(3) per formula unit and is accompanied by a hysteresis of 10 K. chi(M)T vs T curves at atmospheric pressure for A show an abrupt spin transition with Tc downward arrow = 176 K and Tc upward arrow = 187 K. The thermodynamic parameters associated with the spin transition are DeltaH = 8.4 +/- 0.4 kJ mol(-1) and DeltaS = 46.5 +/- 3 J K mol(-1). The thermal dependence of the magnetic susceptibility at different pressures, 0.1-0.91 GPa, points out an unusual behavior, which can only be understood in terms of a crystallographic phase transition or a change in the bulk modulus of the complex. Polymorph B crystallizes in the C2/c space group with an average Fe-N bond length of 2.168(2) A and phi = 14.7 degrees at 293 K. B remains in the HS configuration even at pressures of 1.06 GPa.  相似文献   

14.
The magnetic properties and results from X-ray structure analysis for a new pair of iron(II) spin-crossover complexes [FeL1(meim) 2](meim) ( 1(meim)) and [Fe 2L2(meim) 4](meim) 4 ( 2(meim) 4), with L1 being a tetradentate N 2O 2 (2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentane-dionato)(2-)N,N',O (2),O (2)'], L2 being an octadentate, dinucleating N 2O 2 (2-) coordinating Schiff-base-like ligand [3,3',3',3']-[1,2,4,5-phenylenetetra(iminomethylidyne)]tetra(2,4-pentanedionato)(2-) N, N', N', N', O (2), O (2) ', O (2) ', O (2) '], and meim being N-methylimidazole, are discussed in this work. Crystalline samples of both complexes show a cooperative spin transition with an approximately 2-K-wide thermal hysteresis loop in the case of 1(meim) ( T 1/2 increase = 179 K and T 1/2 decrease = 177 K) and an approximately 21-K-wide thermal hysteresis loop in the case of dinuclear complex 2(meim) 4 ( T 1/2 increase= 199 K and T 1/2 decrease= 178 K). For a separately prepared powder sample of 2, a gradual spin transition with T 1/2 = 229 K is observed that was additionally followed by Mossbauer spectroscopy. The results from X-ray structure analysis give a deeper insight into the molecule packing in the crystal and, by this, help to explain the increase of cooperative interactions during the spin transition when going from the mononuclear to the dinuclear complex. Both compounds crystallize in the triclinic space group P1, and the X-ray structure was analyzed before and after the spin transition. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bite of the equatorial ligand, from about 109 degrees in the high-spin state to 89 degrees in the low-spin state. The cooperative interactions responsible for the thermal hysteresis loop are due to elastic interactions between the complex molecules in both cases. However, due to the higher symmetry of the dinucleating ligand in 2(meim) 4, a 3D network of short contacts is formed, while for mononuclear complex 1(meim), a 2D layer of linked molecules is observed. The spin transition was additionally followed in solution using (1)H NMR spectroscopy for both complexes. In both cases, a gradual spin transition is observed, and the increase of cooperative interactions when going from the mononuclear to the dinuclear system is solely attributed to the extended network of intermolecular contacts.  相似文献   

15.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

16.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

17.
[micro-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4')iron(II)] bis(hexafluorophosphate), [Fe(btzb)(3)](PF(6))(2), crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T(1/2) = 174 K and a hysteresis of about 4 K between T(1/2) and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, (57)Fe-M?ssbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P3 (No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)(3)](PF(6))(2): 300 K (HS), a = 11.258(6) A, c = 8.948(6) A, V = 982.2(10) A(3); 100 K (LS), a = 10.989(3) A, c = 8.702(2) A, V = 910.1(4) A(3). The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4' coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe-N bond lengths change between 1.993(1) A at 100 K in the LS state and 2.193(2) A at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.  相似文献   

18.
A cobalt(II) compound, [Co(C5C12C10-terpy)2](BF4)2 [C5C12C10-terpy = 4',5' '-decyl-1' '-(heptadecyloxy)-2,2':6',2' '-terpyridine] with branched alkyl chains, based on a terpyridine frame, was synthesized. The cobalt(II) compound exhibits a spin transition between low-spin and high-spin with a thermal hysteresis loop (T(1/2) upward arrow = 288 K and T(1/2) downward arrow = 284 K) at the liquid-crystal transition temperature. It is the first example in the cobalt(II) compounds in which the spin transition occurs at the crystal-liquid crystal transition temperature.  相似文献   

19.
The ligand 1,4,8-tri-N-methyl-1,4,8,11-tetraazacyclotetradecane-11-acetic acid (Me3cyclam-acetic acid) has been synthesized by Eschweiler-Clarke methylation of cyclam-acetic acid, and the iron(III) complex [(Me3cyclam-acetate)FeN3]PF6, 1, has been synthesized, which has been found to have significantly different properties than its unmethylated analogue, [(cyclam-acetate)FeN3]PF6, 2. Whereas the iron ion in 2 is low spin with S = 1/2, 1 is found to be high spin at temperatures above 100 K, though low-spin species are observed at lower temperatures, indicating a spin crossover phenomenon. The iron(II) species 1red is electrochemically more accessible than 2red since the Fe2+/3+ redox wave in 1 appears approximately 350 mV more positive than the corresponding wave in 2. Also, 1 displays a reversible Fe3+/4+ redox wave, which is irreversible in 2, denoting that the Fe(IV) species 1ox is kinetically stable. 1red and 1ox have been generated electrochemically in solution and studied spectroscopically. M?ssbauer spectroscopy has confirmed that, in both reduction and oxidation, iron is the redox center, that 1red is high spin (S = 2), and that 1ox is low spin (S = 1), in contrast to 2red which is low spin and 2ox which could not be isolated.  相似文献   

20.
The synthesis, X-ray crystal structure, and magnetic studies of a rare example of organic/inorganic spin hybrid clusters extended in infinite ladder-type chain [Cu(C5F6HO2)2]7(C35H35N5O4)2 ([Cu(hfac)2]7(pyacbisNN)2, 2) formed by the reaction of a high spin nitronylnitroxide biradical C35H35N5O4 (pyacbisNN, 1) and bis(hexafluroacetylacetonate)copper(II) = Cu(hfac)2 are described. Single-crystal X-ray structure analysis revealed the triclinic P1 space group of 2 with the following parameters: a = 10.6191(4) A, b = 19.6384(7) A, c = 21.941(9) A, alpha = 107.111(7) degrees, beta = 95.107(8) degrees, gamma = 94.208(0) degrees , Z = 2. Each repeating unit in 2 carries a centrosymmetric cyclic six spin and a linear five spin cluster with four different copper coordination environments having octahedral and square planar geometries. These clusters are interconnected to form infinite chains which are running along the crystallographic b axis. The magnetic measurements show nearly paramagnetic behavior with very small variations over a large temperature range. The magnetic properties are thus result of complex competitions of many weak ferro- and antiferromagnetic interactions, which appear as small deviations from quite linear mu(eff) vs T dependence at low temperature. At high temperature (300-14 K), antiferromagnetic behavior dominates a little, while at very low temperature (14-2 K), a small increase of mu(eff) was observed. The magnetic susceptibility data are described by the Curie-Weiss law [chi = C/(T - theta)] with the optimal parameters C = 4.32 +/- 0.01 emuK/mol and theta = - 0.6 +/- 0.3 K, where C is the Curie constant and theta is the Weiss temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号