首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

2.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

3.
4.
5.
Let q, h, a, b be integers with q > 0. The classical and the homogeneous Dedekind sums are defined by $$s(h,q) = \sum\limits_{j = 1}^q {\left( {\left( {{j \over q}} \right)} \right)\left( {\left( {{{hj} \over q}} \right)} \right),{\rm{ }}s(a,b,q) = \sum\limits_{j = 1}^q {\left( {\left( {{{aj} \over q}} \right)} \right)\left( {\left( {{{bj} \over q}} \right)} \right),} } $$ respectively, where $((x)) = \left\{ \begin{gathered} x - [x] - \tfrac{1} {2},if x is not an integer; \hfill \\ 0,if x is an integer. \hfill \\ \end{gathered} \right. $ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$\sum\limits_{d|n} {\sum\limits_{r = 1}^d {s\left( {{n \over d}a + rq,dq} \right) = \sigma (n)s(a,q),} } $$ $$\sum\limits_{d|n} {\sum\limits_{{r_1} = 1}^d {\sum\limits_{{r_2} = 1}^d s \left( {{n \over d}a + {r_1}q,{n \over d}b + {r_2}q,dq} \right) = n\sigma (n)s(a,b,q),} } $$ where σ(n) =Σ d|n d. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.  相似文献   

6.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

7.
Gordon  Yehoram  Junge  Marius 《Positivity》1997,1(1):7-43
We extend classical volume formulas for ellipsoids and zonoids to p-sums of segments $${vol}\left( {\sum\limits_{i=1}^m { \oplus_p } [ -x_i ,x_i ]} \right)^{1/n} \sim_{c_p} n^{ - \frac{1}{{p'}}} \left( {\sum\limits_{card(I) = n} {|\det (x_i)_i |^p}} \right)^{\frac{1}{{pn}}}$$ where x1,...,xm are m vectors in $\mathbb{R}^n ,\frac{1}{p} + \frac{1}{{p\prime }} = 1$ . According to the definition of Firey, the Minkowski p-sum of segments is given by $$\sum\limits_{i = 1}^m { \oplus _p [ - x_{i,} x_i ]} = \left\{ {\sum\limits_{i = 1}^m {\alpha _i } x_i \left| {\left( {\sum\limits_{i = 1}^m {|\alpha _i |^{p^\prime } } } \right)} \right.^{\frac{1}{{p^\prime }}} \leqslant 1} \right\}.$$ We describe related geometric properties of the Lewis maps associated to classical operator norms.  相似文献   

8.
In this paper we prove the validity of the inequality $$\begin{array}{*{20}c} {\sup } \\ n \\ \end{array} \int_{ - \pi }^\pi {\left| {\frac{{f(0)}}{2} + \sum\nolimits_{k = 1}^n f \left( {\frac{{k\pi }}{n}} \right)e^{ikt} } \right|} dt \leqslant C\sum\nolimits_{m = 0}^\infty {\left| {\int_0^\pi {f(t)e^{imt} dt} } \right|}$$ for an arbitrary continuous function (C is an absolute constant). An inequality in the opposite sense was obtained by one of us earlier.  相似文献   

9.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

10.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

11.
Let F(Z) be a cusp form of integral weight k relative to the Siegel modular group Spn(Z) and let f(N) be its Fourier coefficient with index N. Making use of Rankin's convolution, one proves the estimate (1) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{2}\delta (n)} ),$$ where $$\delta (n) = \frac{{n + 1}}{{\left( {n + 1} \right)\left( {2n + \tfrac{{1 + ( - 1)^n }}{2}} \right) + 1}}.$$ Previously, for n ≥ 2 one has known Raghavan's estimate $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2}} )$$ In the case n=2, Kitaoka has obtained a result, sharper than (1), namely: (2) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{4} + \varepsilon } ).$$ At the end of the paper one investigates specially the case n=2. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of f(N), n=2.  相似文献   

12.
В РАБОтЕ ДАЕтсь ОтВЕт НА ОДИН ВОпРОс, пОстАВ лЕННыИ В. г. кРОтОВыМ. УстАНОВлЕН О, ЧтО ЕслИ Ф(х) — МОНОтОННО ВО жРАстАУЩАь ФУНкцИь,Ф (0)=0, Ф(2х)≦кФ(х), х[0, ∞), тО $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {S_k - f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\mu _k } \Phi (\lambda _k ) = \infty $$ Дль пРОИжВОльНых НЕО тРИцАтЕльНых ЧИслОВ ых пОслЕДОВАтЕльНОстЕ И {Μk} И {λk}. (жДЕсьS k ОБОжНАЧАЕт ЧАстНУУ с УММУ пОРьДкАk РьДА ФУ РьЕ ФУНкцИИf). УстАНОВлЕН О тАкжЕ, ЧтО ВО МНОгИх слУЧАьх $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {\tilde S_k - \tilde f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\frac{1}{{k\lambda _k }}} \Phi ^{ - 1} \left( {\frac{1}{{k\mu _k }}} \right)< \infty .$$   相似文献   

13.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

14.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

15.
Supposef(x1,..., xn) is a polynomial of even degree d having coefficients in the finite field k=[q] and satisfying certain natural conditions, and let χ be the quadratic character of k. Then $$\left| {\sum {x_1 , \ldots ,} x_n \in k\chi (f(x_1 , \ldots ,x_n ))} \right| \leqslant Cq^{{n \mathord{\left/ {\vphantom {n 2}} \right. \kern-\nulldelimiterspace} 2}} $$ where the constant C depends only on d and n.  相似文献   

16.
The following statement is proved: Theorem.Let f(x), 0≦x≦2π, possess the Fourier expansion $$\mathop \sum \limits_{\kappa = - \infty }^\infty c_\kappa e^{in} \kappa ^x with \bar c_\kappa = c_{ - \kappa } , n_\kappa = - \bar n_{ - \kappa }$$ where {n k } is a Sidon sequence. Then in order to have $$\mathop \sum \limits_{\kappa = - \infty }^\infty |c_\kappa |^p< \infty$$ for a given p, 1 $$\mathop \sum \limits_{k = 1}^\infty \left( {\frac{{\left\| f \right\|L^k (0,2\pi )}}{k}} \right)^p< \infty$$ . An analogous statement holds true for series with respect to the Rademacher system.  相似文献   

17.
We obtain an estimate of the modulus of a complete multiple rational trigonometric sum: $$\left| {\sum {_{x_{1, \ldots ,} x_r = 1^{\exp \left( {{{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} \mathord{\left/ {\vphantom {{2\pi if\left( {x_{1, \ldots ,} x_r } \right)} q}} \right. \kern-\nulldelimiterspace} q}} \right)} }^q } } \right| \ll q^{{{r - 1} \mathord{\left/ {\vphantom {{r - 1} {n + \varepsilon }}} \right. \kern-\nulldelimiterspace} {n + \varepsilon }}} ,$$ where $$\begin{gathered} f\left( {x_{1, \ldots ,} x_r } \right) = \sum {_{0 \leqslant t_1 , \ldots ,t_r \leqslant n^a t_1 , \ldots ,t_r x_1^{t_1 } \ldots x_r^{t_r } ,} } \hfill \\ a_{0, \ldots ,0} = 0,\left( {a_{0, \ldots ,0,1} , \ldots ,a_{n, \ldots ,n,} q} \right) = 1 \hfill \\ \end{gathered} $$ , and an estimate of the modulus of a multiple trigonometric integral.  相似文献   

18.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

19.
For the coefficients bn of an odd function \(f(z) = z + \sum\nolimits_{k = 1}^\infty {{}^bk^{z^{2k + 1} } } \) , regular in the unit disk, we obtain the estimate $$|b_n | \leqslant \frac{1}{{\sqrt 2 }}\sqrt {1 + |b_1 |^2 } \exp \frac{1}{2}\left( {\delta + \frac{1}{2}|b_1 |^2 } \right),where \delta = 0.312,$$ (1) from which it follows that ¦bn¦≤1, if ¦b1¦≤0.524. It follows from (1) that the coefficients cn, n = 3, 4,..., of a regular function \(f(2) = z + \sum\nolimits_{k = 2}^\infty {{}^ck^{z^k } } \) , univalent in the unit desk, satisfy $$|c_n | \leqslant \frac{1}{2}\left( {1 + \frac{{|c_2 |^2 }}{4}} \right)n\exp \left( {\delta + \frac{{|c_2 |^2 }}{8}} \right),where \delta = 0.312,$$ in particular, ¦cn¦≤n, if ¦c2¦≤1.046.  相似文献   

20.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号