首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Kaletra is an important antiretroviral drug, which has been developed by Abbott Laboratories. It is composed of lopinavir (low-pin-a-veer) and ritonavir (ri-toe-na-veer). Both have been proved to be human immunodeficiency virus (HIV) protease inhibitors and have substantially reduced the morbidity and mortality associated with HIV-1 infection. We have developed and validated an assay, using liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry (LC/MS/MS), for the routine quantification of lopinavir and ritonavir in human plasma, in which lopinavir and ritonavir can be simultaneously analyzed with high throughput. The sample preparation consisted of liquid-liquid extraction with a mixture of hexane: ethyl acetate (1:1, v/v), using 100 microL of plasma. Chromatographic separation was performed on a Waters Symmetry C(18) column (150 mm x 3.9 mm, particle size 5 microm) with reverse-phase isocratic using mobile phase of 70:30 (v/v) acetonitrile: 2 mM ammonium acetate aqueous solution containing 0.01% formic acid (v/v) at a flow rate of 1.0 mL/min. A Waters symmetry C(18) guard column (20 mm x 3.9 mm, particle size 5 microm) was connected prior to the analytical column, and a guard column back wash was performed to reduce the analytical column contamination using a mixture of tetrahydrofuran (THF), methanol and water (45:45:10, v/v/v). The analytical run was 4 min. The use of a 96-well plate autosampler allowed a batch size up to 73 study samples. A triple-quadrupole mass spectrometer was operated in a positive ion mode and multiple reaction monitoring (MRM) was used for drug quantification. The method was validated over the concentration ranges of 19-5,300 ng/mL for lopinavir and 11-3,100 ng/mL for ritonavir. A-86093 was used as an internal standard (I.S.). The relative standard deviation (RSD) were <6% for both lopinavir and ritonavir. Mean accuracies were between the designed limits (+/-15%). The robust and rapid LC/MS/MS assay has been successfully applied for routine assay to support bioavailability, bioequivalence, and pharmacokinetics studies.  相似文献   

3.
Dried blood spot (DBS) sampling and quantitative analyses of many current therapeutic drug monitoring (TDM)-guided drugs are advantageous because of the minimal invasive sampling strategy. Here, a fast and robust LC-MS/MS method was developed and analytically validated for simultaneous determination of venlafaxine (VEN) and O-desmethylvenlafaxine (ODV) in DBS. Six-millimeter circles were punched out from DBS collected on Whatman DMPK-C paper, and the DBS was extracted with acetonitrile/methanol at 1:3. The total run time was 4.8 min. The assay was linear in the range of 20–1,000 μg/L for both VEN and ODV. Assay accuracy and precision was well within limits of acceptance (LLOQ?=?20 μg/L). Normal hematocrit concentrations (0.30–0.50) did not influence the results neither did a normal spot volume (40–80 μL). Punch position at the perimeter instead of the center of the blood spot gave a bias ranging from 2.4 to 10.4 %. Correlation between plasma and spiked DBS samples was high. The concentrations found in spiked DBS samples were higher than those in plasma, indicating that a conversion factor for translation of DBS to plasma values is needed. This analytically validated method is suitable for determination of VEN and ODV in DBS and applicable for TDM. The method will be used for TDM of VEN in the Dutch CYSCE multicenter trial (NCT01778907).  相似文献   

4.
HIV protease inhibitors are important antiretroviral drugs which have substantially reduced the morbidity and mortality associated with HIV-1 infection. Recent data have shown relationships between plasma concentrations of the protease inhibitors and clinical response, which makes therapeutic drug monitoring valuable. We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), for the routine quantification of the six licensed protease inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) and the pharmacologically active nelfinavir metabolite M8 in plasma. The sample pretreatment consisted of protein precipitation with a mixture of methanol and acetronitrile using only 100 microl of plasma. Chromatographic separation was performed on an Inertsil ODS3 column (50 x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml min(-1). The analytical run time was 5.5 min. The use of a 96-well plate autosampler allowed batch sizes up to 150 patient samples. The triple-quadrupole mass spectrometer was operated in the positive ion mode and multiple reaction monitoring was used for drug quantification. The method was validated over the concentration ranges 0.01-10 microg ml(-1) for indinavir and saquinavir, 0.1-10 microg ml(-1) for amprenavir, 0.05-10 microg ml(-1) for nelfinavir and ritonavir, 0.1-20 microg ml(-1) for lopinavir and 0.01-5 microg ml(-1) for M8. Saquinavir-d(5) and indinavir-d(6) were used as internal standards. The coefficients of variation were always <10% for both intra-day and inter-day precisions for each compound. Mean accuracies were also between the designated limits (+/-15%). The validated concentration ranges proved to be adequate in daily practice. This robust and fast LC/MS/MS assay is now successfully applied for routine therapeutic drug monitoring and pharmacokinetic studies in our hospital.  相似文献   

5.
Preterm and term neonates often require surgical procedures and analgesia. However, our knowledge about neonatal pharmacokinetics of fentanyl, the most commonly used drug for these procedures, and its metabolites is still incomplete. To facilitate pharmacokinetic studies of fentanyl and its metabolites in neonates and other children, we developed and validated an LC-MS/MS method based on minimally invasive, low blood volume sampling. LC-MS/MS was used for the simultaneous analysis of fentanyl, despropionyl fentanyl (DPF), and norfentanyl from dried blood samples (DBS) collected on filter paper. Positive ions were monitored using multiple reaction monitoring. Since the standard matrix for measuring fentanyl blood concentrations is plasma, the assay was developed and validated in plasma, whole blood, and then DBS. Our method was able to measure clinically relevant levels of fentanyl and its metabolites. In DBS, the lower limits of quantification were 100 pg/mL for fentanyl with a range of reliable response from 0.1 to 100 ng/mL (r(2)>0.99) and 250 pg/mL for both DPF and norfentanyl with a range of reliable response from 0.25 to 100 ng/mL (r(2)>0.99). In plasma and in DBS inter-day accuracy and precisions of fentanyl met predefined acceptance criteria and also indicated comparable assay performance in both matrices.  相似文献   

6.
A high‐performance liquid chromatography/positive ion electrospray tandem mass spectrometry method for the simultaneous quantification of lamivudine, stavudine and nevirapine was developed and validated in dried blood spot (DBS) cards. The analytes were separated using an isocratic mobile phase on a reverse phase column and analyzed by MS/MS in the MRM mode using the respective [M + H]+ ions, m/z 230–112 for lamivudine, m/z 225–127 for stavudine, m/z 267–226 for nevirapine, m/z 383–337 for zidovudine (IS). The lower limit of quantification was 1 ng/mL for both lamivudine and stavudine and 10 ng/mL for nevirapine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The method was successfully applied to quantify them in a rat pharmacokinetic study in whole blood, plasma and DBS cards after a single oral co‐administration at the dose of 10, 2 and 13 mg/kg for lamivudine, stavudine and nevirapine, respectively, to male Wistar rats. Following oral administration the pharmacokinetic results in all the matrices are in close agreement. Thus accomplishment of this method would facilitate the ease of collection of clinical samples on DBS cards for lamivudine, stavudine and nevirapine during human clinical trials and therapeutic drug monitoring. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Meropenem (MER) is widely used to treat complicated and serious infections. Therapeutic drug monitoring (TDM) provides a valid clinical tool to avoid suboptimal concentrations and dose–related adverse reactions. However, TDM seems to face challenges since the limited stability of MER in plasma makes transport difficult between clinics and laboratories. Dried plasma spot (DPS) sampling is an attractive but underutilized method for TDM that has the desired features of easy collection, storage, and transport, and overcomes known hematocrit (HCT) issues in dried blood spot (DBS) analysis. This study was designed to investigate a DPS–based liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for quantification of MER. The method was developed and validated for DPS and wet plasma samples. Calibration curves were linear (R2 > 0.995) over the concentration range of 0.5–50 µg/mL. Overall accuracy and precision did not exceed 15% and no significant matrix effect was observed. MER has been more stable in DPS than in wet plasma samples. A comparison of DPS and wet plasma concentrations was assessed in 32 patients treated with MER. The results showed that there was no significant difference between the two methods. So the DPS method developed in this study is appropriate and practical for the monitor of MER in the daily clinical laboratory practice.  相似文献   

8.
The collection of human blood samples as dried blood spots (DBS) for the pharmacokinetic assessment of investigational drugs in clinical trials offers a number of advantages over conventional plasma sampling, namely, small sample volume, simplified sample handling, and cost-effective shipping and storage. The use of DBS coupled with liquid chromatography–tandem mass spectrometry analysis was evaluated for the quantification of MK-1775, a Wee-1 inhibitor under development as a chemo/radio-sensitizer for the treatment of cancer. The DBS method exhibited an assay performance comparable to that of the existing plasma assay, which is currently used in support of clinical studies. Both assays used the same linear dynamic range of 2–1,000?ng/mL, with a lower limit of quantification of 2?ng/mL. Based on the intra-day assay validation results, the accuracy of the DBS method ranged from 94.0 to 105.0?%, with a coefficient of variation of <4.8?%. The blood-to-plasma ratio calculated from the DBS data (blood concentrations) and the plasma data (plasma concentrations) was in good agreement with the one obtained from the in vitro assessment using conventional methodology. No significant hematocrit impact on the assay was observed as hematocrit ranged from 16 to 85?%. The correlation between the measured MK-1775 concentrations in plasma and that determined in dried blood spots from oncology patients during the ongoing clinical study was discussed.  相似文献   

9.
Dried blood spots (DBS), collected as part of the newborn screening program (NSP) in the USA, is a valuable resource for studies on environmental chemical exposures and associated health outcomes in newborns. Nevertheless, determination of concentrations of environmental chemicals in DBS requires assays with great sensitivity, as the typical volume of blood available on a DBS with 16-mm diameter disc is approximately 50 μL. In this study, we developed a liquid–liquid extraction and high-performance liquid chromatography/tandem mass spectrometry method for the detection of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and bisphenol A (BPA) in DBS. The method was validated for accuracy, precision, and sensitivity, by spiking of target chemicals at different levels on Whatman 903 filter cards, which is used in the collection of DBS by the NSP. Contamination arising from collection, storage, and handling of DBS is an important issue to be considered in the analysis of trace levels of environmental chemicals in DBS. For the evaluation of the magnitude of background contamination, field blanks were prepared from unspotted portions of DBS filter cards collected by the NSP. The method was applied for the measurement of PFOS, PFOA, and BPA in 192 DBS specimens provided by NSP of New York State. PFOS and PFOA were detected in 100 % of the specimens analyzed. The concentrations of PFOS and PFOA measured in DBS were similar to those reported earlier in the whole blood samples of newborns. BPA was also found in 86 % of the specimens at concentrations ranging from 0.2 to 36 ng/mL (excluding two outliers). Further studies are needed to evaluate the sources of BPA exposures and health outcomes in newborns.  相似文献   

10.
Thiorphan, the active metabolite of racecadotril, can undergo oxidation in biological matrices such as blood and plasma. In bioanalysis, a general approach for the stabilization of such a molecule is to derivatize the thiol group to a more stable thioether, often requiring complex handling procedures at the clinical site. In this research, the concept of dried blood spot (DBS) on‐card derivatization was evaluated to stabilize thiorphan. DBS cards were in‐house pre‐treated with 2‐bromo‐3′‐methoxyacetophenone and left to dry prior to blood spotting. Thiorphan was shown to be effectively derivatized to thiorphan–methoxyacetophenone once applied on the in‐house pre‐treated cards. Thiorphan–methoxyacetophenone was extracted by soaking a 6 mm DBS punch in methanol containing the internal standard (thiorphan–methoxyacetophenone‐D5). Chromatographic separation was achieved on a Waters XBridge C18 column with a gradient elution of 5 m m NH4HCO3 and methanol in 2.5 min and detection by ESI(+)/MS/MS. A linear (weighted 1/x2) relationship was obtained over a concentration range of 5.00–600.00 ng/mL. The assay met regulatory guidelines acceptance criteria for sensitivity, selectivity, precision and accuracy, matrix effect, recovery, dilution integrity and multiple stability evaluations. The DBS on‐card derivatization has shown to be an easy and reliable alternative form of sample collection for the quantification of thiorphan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The use of blood spot collection cards is a simple way to obtain specimens for therapeutic drug monitoring, assessing adherence to medications and preventing toxicity in a clinical setting. A high‐throughput liquid chromatography–electrospray ionization mass spectrometric (LC‐ESI‐MS) method for determination of rifaximin on dried blood spots (DBS) was developed and validated. It involves solvent extraction of a punch of DBS followed by reversed‐phase LC on a monolithic column consisting of a silica rod with bimodal pore structure and detection by ESI‐MS. Rifampicin was used as an internal standard (IS). The run time was within 5.0 min with a very low back‐pressure at a flow rate of 0.5 mL/min. The assay was linear from 0.1 to 10 ng/mL. The mean recovery was 98.42%. The developed method is very simple, rapid and useful for clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive and selective method using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) was developed and validated for the measurement of three antiretroviral agents, efavirenz, lopinavir and ritonavir, in human hair. Hair samples from adherent HIV-infected patients on antiretroviral therapies were cut into about 1 mm length segments and drugs were extracted by first shaking the samples with methanol in a 37 degrees C water bath overnight (>14 h), followed by methyl tert-butyl ether/ethyl acetate (1:1) extraction under weak alkaline conditions. The extracted lopinavir and ritonavir were separated by reversed-phase chromatography and detected by tandem mass spectrometry in electrospray positive ionization mode with multiple reaction monitoring (MRM), while efavirenz was monitored in negative ionization MRM mode. This method was validated from 0.01 to 4.0 ng/mg hair for ritonavir and 0.05-20 ng/mg hair for lopinavir and efavirenz by using 2 mg of a human hair sample. The interday and intraday assay precision (coefficients of variation, CV) for spiked quality control (QC) samples at low, medium and high concentrations were within 15% and accuracy ranged from 89% to 110%. Assay reproducibility was also demonstrated by analysis of incurred hair QC samples (CV <14%). No significant matrix ionization suppression was observed. This developed method allowed for the monitoring of these target medications in the hair samples of HIV-infected women on antiretroviral therapy in an observational study using small amounts of hair.  相似文献   

13.
Methylmalonic acid (MMA) and total homocysteine (tHCYS) concentrations are used to detect acquired and inborn errors of cobalamin (vitamin B12, Cbl) metabolism and to evaluate the effect of therapeutic interventions. Dried blood spot sampling offers a patient-friendly and easy alternative to plasma sampling. However, dried blood spot concentrations are not necessarily equal to plasma concentrations. Therefore, the objective of this work was to establish the relationship between MMA and tHYS dried blood spot and plasma concentrations to facilitate clinical implementation of dried blood spot sampling. MMA and tHCYS in both plasma and DBS were validated on ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). While position of the punch (in DBS) did affect tHCYS concentration, no influence of hematocrit (Ht) and blood volume on both MMA and tHCYS concentrations was observed. The plasma assay performed better than the DBS assay by most criteria. However, the DBS matrix was superior for tHCYS stability. Paired plasma and DBS samples were obtained from patients suspected for Cbl deficiency and from patients with a known inborn error of metabolism affecting MMA or tHCYS concentration. Based on the strong correlation of tHCYS in both matrices (y = 0.46 ± 1.12 (r2 = 0.91)), determination of tHCYS in plasma can be replaced by tHCYS in DBS. However, for MMA, a correlation in the higher (pathological) range of MMA exist, but no correlation was observed in the lower ranges. Therefore the added value of MMA concentrations in DBS is currently unknown and should be further investigated.  相似文献   

14.
An early clinical development study (phase I) was conducted to determine the usefulness of dried blood spot (DBS) sampling as an alternative to venous sampling for phenotyping and genotyping of CYP450 enzymes in healthy volunteers. Midazolam (MDZ) was used as a substrate for phenotyping CYP3A4 activity; the concentrations of MDZ and its main metabolite 1'-hydroxymidazolam (1-OH MDZ) were compared between the DBS method from finger punctures, plasma and whole blood (WB), drawn by venipuncture, whereby several methodological parameters were studied (i.e. punch width, amount of dots analyzed and storage time stability). Genotyping between DBS and venous WB samples was compared for CYP2D6 (*3, *4, *6), CYP2C19 (*2, *3), CYP3A4 (*1B) and CYP3A5 (*3C). In addition, the subject's and phlebotomist's satisfaction with venous blood sampling compared with the DBS method was evaluated using a standardized questionnaire. An LC-MS/MS method for the quantification of the MDZ and 1-OH MDZ concentrations in DBS samples was developed and validated in the range of 0.100-100 ng/mL. No compromises were made for the limits of quantification of the DBS-LC-MS/MS method vs the authentic plasma and WB methods.  相似文献   

15.
Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %–92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.
Figure
?  相似文献   

16.
A simple, sensitive and rapid assay method has been developed and validated as per regulatory guidelines for the estimation of enasidenib on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The method employs liquid extraction of enasidenib from DBS disks of mouse whole blood followed by chromatographic separation using 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 1.0 mL/min on an Atlantis dC18 column with a total run time of 2.0 min. The MS/MS ion transitions monitored were m/z 474.0 → 267.1 for enasidenib and m/z 309.2 → 251.3 for the internal standard (warfarin). The assay was linear in the range of 1.01 – 3044 ng/mL. The within‐run and between‐run precisions were in the range of 3.18 – 9.06 and 4.66 – 8.69%, respectively. Stability studies showed that enasidenib was stable on DBS cards for 1 month. This novel method has been applied to analyze the DBS samples of enasidenib obtained from a pharmacokinetic study in mice.  相似文献   

17.
There is significant evidence that athletes are using recombinant human growth hormone (rhGH) to enhance performance, and its use is banned by the World Anti-Doping Agency and professional sports leagues. Insulin-like growth factor-1 (IGF-1) is the primary mediator of growth hormone action and is used as a biomarker for the detection of rhGH abuse. The current biomarker-based method requires collection and expedited shipment of venous blood which is costly and may decrease the number of tests performed. Measurement of GH biomarkers in dried blood spots (DBS) would considerably simplify sample collection and shipping methods to allow testing of a greater number of samples regardless of location. A method was developed to quantify intact IGF-1 protein in DBS by liquid chromatography–tandem mass spectrometry. A step-wise acid–acetonitrile extraction was optimized to achieve a sensitive assay with a lower limit of quantification of 50 ng/mL. IGF-1 remained stable at room temperature for up to 8 days, which would allow shipment of DBS cards at ambient temperature. In a comparison between plasma concentrations of IGF-1 and concentrations measured from venous and finger prick DBS, there was good correlation and agreement, r 2 of 0.8551 and accuracy of 86–113 % for venous DBS and r 2 of 0.9586 and accuracy of 89–122 % for finger prick DBS. The method is intended for use as a rapid screening method for IGF-1 to be used in the biomarker method of rhGH abuse detection.  相似文献   

18.
Micafungin (MCF) is an antifungal agent of the echinocandin class approved in Europe both in adults and in children for the treatment of invasive candidiasis. Few analytical methods for therapeutic drug monitoring (TDM) of this drug have been described so far. In this paper, we describe a rapid and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of MCF in plasma. MCF was analyzed in 100-μL plasma samples over a wide range of concentrations (0.1–20 μg/mL) by LC-MS/MS after protein precipitation. The suitability of the assay for TDM was evaluated by using plasma samples from pediatric patients who received MCF for the treatment of invasive candidiasis. The overall turnaround time for the assay was 20 min. The lower limit of quantification of the method was 0.1 ng/mL. No ion suppression due to matrix effects was found with different pre-analytical conditions, such as hemolysis, lipemia, and hyperuricemia. A simple and rapid LC-MS/MS method which provides high specificity, precision, and accuracy for quantification of MCF in plasma has been developed and validated.  相似文献   

19.
Lopinavir and ritonavir are co-formulated in Kaletra® approved for the treatment of human immunodeficiency virus infection. A validated analytical method is mandatory for clinical development and therapeutic drug monitoring. Here we are reporting a method for rapid, simultaneous determination of lopinavir and ritonavir in human plasma with stacked protein precipitations and salting-out assisted extraction (SALLE), and ultrafast LC-MS/MS detection. With stacked protein precipitations and SALLE, the sample preparation for a 96-well plate can be completed within 20 min by an automated pipette. Due to the unique cleanliness of SALLE extracts post double protein precipitations, the extracts were injected into an ultrafast liquid chromatography and tandem mass spectrometry system (LC-MS/MS) after simple dilution. An Agilent Zobax Extend-C18 Rapid resolution HT column (1.8 μm, 2.1 mm × 30 mm) was used for the separation. A mixture of acetonitrile:water (55:45, v/v) with 0.1% formic acid was used as the mobile phase. LC ran for approximately 48 s at a flow rate of 0.5 mL min−1, tandem mass spectrometric data collection started at 15 s and lasts for 30 s. The method was validated with reference to Industry Guidance for Bioanalytical Method Validation and then used for clinical samples. The method is ultrafast, and robust. Results of incurred samples demonstrated excellent method of reproducibility. This ultrafast analysis speed did not compromise with the data quality. To our knowledge, this is the fastest analytical method for simultaneous determination of lopinavir and ritonavir.  相似文献   

20.
For therapeutic drug monitoring in remote settings, dried blood spots (DBS) are particularly advantageous, as blood sample collection and handling is uncomplicated. The aim of this study was to develop and validate an automated extraction method for the analysis of nevirapine, efavirenz and lopinavir in DBS samples. Automated extraction was performed with methanol : water (70 : 30 v /v ), using a DBS‐MS 500 autosampler coupled to a liquid chromatography tandem mass spectrometry system. The autosampler used digital images of each DBS to position the extraction head, sprayed 10 μl of internal standard onto each DBS and extracted a 4‐mm disc (Ø) from the centre of each spot by unilateral flow using 25‐μl extraction solvent. The analytes were baseline separated on a pentafluorophenyl column and analysed by using electrospray ionization with multiple reaction monitoring in positive polarity mode for nevirapine and lopinavir and in negative mode for efavirenz. The method was linear between 10 and 10 000 ng/ml for all analytes. Automated sample extraction resulted in consistent recoveries (nevirapine: 70 ± 6%, efavirenz: 63 ± 11% and lopinavir: 60 ± 10%) and matrix effects between different donors and concentration levels. Intra‐day and inter‐day accuracy and precision deviations were ≤15%. Manual and automated extractions of DBS samples collected within the framework of an adherence assessment study in rural Tanzania showed good agreements with deviations of less than 10%. Our study highlights that therapeutic drug monitoring samples obtained in the resource‐constrained setting of rural Africa can be reliably determined by automated extraction of DBS. Overall, automatization improved method sensitivity and facilitates analysis of large sample numbers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号