首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实验研究了3毫米口径轴对称收缩喷嘴在各种压比下射流垂直冲击和倾斜冲击坚固大平板产生的噪声的指向特性。发现噪声在过平板法线和喷嘴轴线的平面内呈近似四瓣分布,当喷嘴与平板距离减小时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。喷嘴压比增加时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。根据自由射流噪声的基本指向特性、射流冲击噪声基本指向特性、声波在平板处发生镜面反射和声波能量叠加的设定,建立了一个冲击射流总体噪声指向特性的模型,成功解释了实验结果,并揭示了形成冲击射流总体噪声指向特性的内在机理。  相似文献   

2.
The present paper focuses on the analysis of unsteady flow and heat transfer regarding an axisymmetric impinging synthetic jet on a constant heat flux disc. Synthetic jet is a zero net mass flux jet that provides an unsteady flow without any external source of fluid. Present results are validated against the available experimental data showing that the SST/k − ω turbulence model is more accurate and reliable than the standard and low-Re k − ε models for predicting heat transfer from an impinging synthetic jet. It is found that the time-averaged Nusselt number enhances as the nozzle-to-plate distance is increased. As the oscillation frequency in the range of 16–400 Hz is increased, the heat transfer is enhanced. It is shown that the instantaneous Nu distribution along the wall is influenced mainly by the interaction of produced vortex ring and wall boundary layer. Also, the fluctuation level of Nu decreases as the frequency is raised.  相似文献   

3.
The triangular oscillating jet nozzle generates a triangular jet partially confined within an axi-symmetric chamber to produce a large scale flow oscillation that has application in thermal processes. Particle image velocimetry and oscillation frequency measurements were conducted to investigate the influence of the jet fluid to ambient fluid density ratio on the resulting oscillating flow. The investigation was conducted with a jet momentum flux of 0.06 kg m s−2 (Re = 7.3−47.2 × 103) and density ratios ranging from 0.2 to 5.0. The initial spread and decay of the emerging jet was found to depend upon the density ratio but in a more complex way than does an unconfined jet. Both the spread and decay are strongly influenced by the instantaneous angle of jet deflection, with greater deflection leading to increased spreading and decay of the jet. Decreasing the density ratio below unity results in a rapid decrease in the deflection angle, while increasing the density ratio above unity results in an increase in the deflection angle, albeit with less sensitivity. The frequency of oscillation was also shown to depend on the density ratio with an increase in the density ratio causing a decrease in the dominant oscillation frequency.  相似文献   

4.
The self-excited oscillation of a large aspect ratio planar jet impinging on a flat plate is investigated experimentally at a single transonic jet velocity to clarify the effect of varying the jet thickness on pattern of jet oscillation and frequency of resulting acoustic tone. The study has been performed for a series of jet thicknesses, 1 mm to 4 mm, each of which is tested for the complete range of plate position, i.e. impingement distance, over which acoustic tones are generated. The results reveal that the jet oscillation is controlled by a fluid-dynamic mechanism for small impingement distances, where the hydrodynamic flow instability controls the jet oscillation without any coupling with local acoustic resonances. At larger impingement distances, a fluid-resonant mechanism becomes dominant, in which one of the various hydrodynamic modes of the jet couples with one of the resonant acoustic modes occurring between the jet nozzle and the impingement plate. Within the fluid-resonant regime, the acoustic tones are found to be controlled by the impingement distance, which is the length scale of the acoustic mode, with the jet thickness having only minor effects on the tone frequency. Flow visualization images of the jet oscillation pattern at a constant impingement distance show that the oscillation occurs at the same hydrodynamic mode of the jet despite a four-fold increase in its thickness. Finally, a feedback model has been developed to predict the frequency of acoustic tones, and has been found to yield reasonable predictions over the tested range of impingement distance and nozzle thickness.  相似文献   

5.
A method of theoretical investigation of the flow field in a two-dimensional (plane-parallel or axisymmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio in the plane jet, and ratio of specific heats of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83, May–June, 2006.  相似文献   

6.
自激振荡脉冲射流喷嘴装置系统频率特性理论研究   总被引:5,自引:1,他引:4  
根据相似系统原理和流体网络理论建立了自激振荡脉冲射流喷嘴装置的等效网络模型,利用系统传递函数推导了系统频率特性方程并进行了数值计算。结果表明:喷嘴装置的固有频率主要由喷嘴形状、结构参数、入口流速、射流中压力扰动波波速决定;自激振荡腔腔径、自激振荡腔腔长、上喷嘴直径、下喷嘴直径都对系统频率特性影响很大。提出了相应的自激振荡脉冲射流喷嘴设计准则,即喷嘴装置在最佳阻尼比下产生谐波共振。  相似文献   

7.
Flow characteristics of confined, laminar milliscale slot jets are investigated from visualizations, as they impinge upon a flat target plate, with a fully developed velocity profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance H/B are considered for a nozzle width B of 1.0 mm. Transition from a stable symmetric jet to an unsteady oscillating jet is observed as the Reynolds number increases (with H/B constant), where the Reynolds number associated with this transition decreases as the normalized nozzle-to-plate distance H/B increases. Instantaneous visualizations show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations, intermittent oscillating motion of the jet column, and jet flow fluctuation/flapping motion. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures, which form as secondary flows develop in fluid which, initially, is just adjacent to and within the jet column. Associated jet and vortex structural changes are described as different modes of unsteadiness are present, including characterization of jet column unsteadiness using jet column oscillation frequency, and lateral and streamwise extents of jet distortion.  相似文献   

8.
为研究小口径喷嘴冲击射流的噪声特性,测定了3mm口径的轴对称收缩喷嘴在各种压比情况下产生的亚音速和超音速射流冲击坚固大平板产生的噪声。发现噪声在空间呈近似四瓣分布,当喷嘴与平板距离减小时,噪声指向壁射流下游的瓣到增强,反之,噪声指向喷嘴上游的瓣得到增强。噪声随喷嘴距平板距离的增加呈增强的趋势,在距平板一定距离内有锯齿现象。噪声随喷嘴压比的增加而增强,相应于各种工况,存在一不同的压比值,此压比之前,噪声随压比的增大而迅速提高,但有起伏现象,在此压比之后,噪声平缓地随压比的增大而增强。  相似文献   

9.
The study of an under‐expanded supersonic jet impinging on a flat plate by using large‐eddy simulation is reported. A third‐order upwind compact difference and a fourth‐order symmetric compact scheme are employed to discretize the nondimensional axisymmetric compressible Favre‐filtered Navier–Stokes equations in space, whereas the third‐order Runge–Kutta method with the total variation diminishing property is adopted to deal with the temporal discretization. The numerical simulation successfully captures the shock wave and vortex structures with different scales in the flow field. Waves with high and low frequencies traveling forward and reflecting back, and sound sources in different locations can be observed. By comparison with the frequency of the impinging tone from the experiment, it can be deduced that the change of pressure and swirling strength in the shear layer, pressure change on the impinging plate, and vortex merging in the jet shear layer are interdependent with the impinging tone. The effects of nozzle lip thickness on the impinging jet flow field have been investigated. The results show that the values of pressure fluctuation and vortex swirling strength in the shear layer near the nozzle have an extremum with the variation of the nozzle lip thickness. The results provide a theoretical foundation for the design of supersonic nozzles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

11.
带喷流激波针流动特性实验研究   总被引:2,自引:2,他引:0  
采用动态测力、动态测压和纹影等风洞实验技术,对加装了带喷流激波针的钝头体的绕流特性、稳定和非稳模态的形成条件和机理进行了研究.结果表明:带喷流激波针流场存在稳态和非稳态两种模态,超声速喷流的压比大于临界压比时流动处于稳定模态,反之则为非稳模态;增大激波针长度可减小钝头体阻力,但达到一定长度后,进一步减阻的效果不再显著;增大喷流压比能够有效减弱再附激波强度,有利于缓解单独激波针的肩部热斑问题;非稳模态下波系自激振荡对再附激波在钝头体表面所围的区域影响剧烈,振荡是周期性的,且存在确定的主导频率,主导频率随喷流压力比增大而减小;自激振荡的产生是由于喷流出口周围的反压在喷流压比小于临界压比时无法获得持续的平衡而导致.   相似文献   

12.
The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur.For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity.  相似文献   

13.
轴对称直喷管的射流噪声特性实验研究   总被引:1,自引:0,他引:1  
周月荣  郑刘  陈志敏 《实验力学》2011,26(3):274-278
为了研究喷管射流噪声特性问题,应用丹麦B.K.公司3560C型多用途分析系统,对抽对称直喷管在不同压比下产生的亚音速和跨音速射流噪声进行了测量.并对外流场轴向和截面流动特性进行了测量和分析,确定了测量噪声探头放置位置,比较了离模型截面不同位置处的噪声.给出频率在5000HZ内噪声变化的规律,发现在低频时随着静压比的增加...  相似文献   

14.
Measurements were made of the flow field structure and the near field parameters of a jet exhausting from a sonic nozzle with a 1.27 cm exit diameter. Compressed air was used for obtaining stagnation pressures up to 5 atmospheres. The jet exhausted vertically from a settling chamber into an acoustically insulated room and through an insulated duct out through the roof. Measurements were made with several different reflecting surfaces at the nozzle exit as well as an insulating surface. Schlieren pictures at 500,000 frames/s were taken. Overall sound pressure level, impact pressure level downstream, and sound frequency analyzer measurements were made.It was found that with a reflecting surface there was a radial oscillation of the jet which had the same frequency as the dominant sound (screech) frequency emitted by the jet. No axial motion of the inviscid part of the flow structure was detected. The insulated surface at the nozzle exit appeared to shift the dominant frequencies of the sound generated into the region above the audible (>16 KHz). A reflecting surface yielded pure tones (screech) with one or two harmonics. The dominant (screech) frequency decreased as the stagnation pressure increased. The screech frequency was found to be approximately inversely proportional to the length of the first shock cell.Nomenclature C 0 speed of sound in ambient gas - D diameter of nozzle exit - f frequency of pure tone (screech frequency) - L 1 length of first cell, distance between nozzle exit plane and intersection of shock with shear layer - M Mach number based on isentropic expansion to ambient pressure - P 0 stagnation chamber pressure - P a ambient pressure - P i impact pressure - R LB distance from nozzle centerline to left boundary of jet - R RB distance from nozzle centerline to right boundary of jet - t time - period of screech, 1/f - X E axial distance of eddy from nozzle exit plane - X I axial distance of third cell shock intersection from nozzle exit plane - Y I transverse distance of third cell shock intersection from nozzle centerline  相似文献   

15.
来流脉动对自激振荡脉冲流的影响   总被引:1,自引:0,他引:1  
基于瞬变流和流体网络理论建立了由往复柱塞泵,管路和自激振荡呀嘴组成的装置系统的数学模型,分析了泵源脉动对自激振荡脉冲射流振荡特性的影响,表明当来流脉动频率小于或等于嘴嘴装置的固有频率时,能提高射流的振荡,冲蚀效果,理论分析与实验结果吻合,其结论对合理设计自激振荡射流喷嘴有一定的指导意义。  相似文献   

16.
Measurements were made of the flow field structure and the near field parameters of a jet exhausting from a sonic nozzle with a 1.27 cm exit diameter. Compressed air was used for obtaining stagnation pressures up to ~5 atmospheres. The jet exhausted vertically from a settling chamber into an acoustically insulated room and through an insulated duct out through the roof. Measurements were made with several different reflecting surfaces at the nozzle exit as well as an insulating surface. Schlieren pictures at 500,000 frames/s were taken. Overall sound pressure level, impact pressure level downstream, and sound frequency analyzer measurements were made. It was found that with a reflecting surface there was a radial oscillation of the jet which had the same frequency as the dominant sound (screech) frequency emitted by the jet. No axial motion of the inviscid part of the flow structure was detected. The insulated surface at the nozzle exit appeared to shift the dominant frequencies of the sound generated into the region above the audible (>16 KHz). A reflecting surface yielded “pure tones” (screech) with one or two harmonics. The dominant (screech) frequency decreased as the stagnation pressure increased. The screech frequency was found to be approximately inversely proportional to the length of the first shock cell.  相似文献   

17.
This paper presents the characteristics of flow behavior and thermal fields of both free and impingement jets issued from circular orifice nozzle at Re = 9,700. The flow behavior of a single round jet and impingement jet were observed by smoke flow visualization recorded by a high speed video camera with 5,000 frames per second. Heat transfer coefficient on the impingement surface was calculated varying the Reynolds number and the separation distance between nozzle exit and plate. Time-series analysis was applied to the visualization image to get the information of time variation of flow behavior. Probability distribution of vortex scale induced by the jet at discrete positions was investigated. Experimental results show that the potential core is not a continuous phenomenon with time and the frequency of vortex ring formation have similar features regardless of whether the impingement plate was set on or not, furthermore the time-series analysis with flow visualization images makes clear the detailed flow behavior.  相似文献   

18.
This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate.  相似文献   

19.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

20.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号