首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

It is established that increasing the amplitude of a flutter stimulus increases its perceived intensity. Although many studies have examined this phenomenon with regard to the responding afferent population, the way in which the intensity of a stimulus is coded in primary somatosensory cortex (SI) remains unclear.  相似文献   

2.

Background  

While SII cortex is considered to be the first cortical stage of the pathway that integrates tactile information arising from both sides of the body, SI cortex is generally not considered as a region in which neuronal response is modulated by simultaneous stimulation of bilateral (and mirror-image) skin sites.  相似文献   

3.

Background  

Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS.  相似文献   

4.

Background

Continuous theta burst stimulation (cTBS) is a form of repetitive transcranial magnetic stimulation which has been shown to alter cortical excitability in the upper limb representation of primary somatosensory cortex (SI). However, it is unknown whether cTBS modulates cortical excitability within the lower limb representation in SI. The present study investigates the effects of cTBS over the SI lower limb representation on cortical somatosensory evoked potentials (SEPs) and Hoffmann reflex (H-reflex) following tibial nerve stimulation at the knee. SEPs and H-reflex were recorded before and in four time blocks up to 30 minutes following cTBS targeting the lower limb representation within SI.

Results

Following cTBS, the P1-N1 first cortical potential was significantly decreased at 12?C16 minutes. CTBS also suppressed the P2-N2 second cortical potential for up to 30 minutes following stimulation. The H-reflex remained statistically unchanged following cTBS although there was a modest suppression observed.

Conclusion

We conclude that cTBS decreases cortical excitability of the lower limb representation of SI as evidenced by suppressed SEP amplitude. The duration and magnitude of the cTBS after effects are similar to those observed in upper limb studies.  相似文献   

5.

Background

Several studies have shown that Stroop interference is stronger in children than in adults. However, in a standard Stroop paradigm, stimulus interference and response interference are confounded. The purpose of the present study was to determine whether interference at the stimulus level and the response level are subject to distinct maturational patterns across childhood. Three groups of children (6–7 year-olds, 8–9 year-olds, and 10–12 year-olds) and a group of adults performed a manual Color-Object Stroop designed to disentangle stimulus interference and response interference. This was accomplished by comparing three trial types. In congruent (C) trials there was no interference. In stimulus incongruent (SI) trials there was only stimulus interference. In response incongruent (RI) trials there was stimulus interference and response interference. Stimulus interference and response interference were measured by a comparison of SI with C, and RI with SI trials, respectively. Event-related potentials (ERPs) were measured to study the temporal dynamics of these processes of interference.

Results

There was no behavioral evidence for stimulus interference in any of the groups, but in 6–7 year-old children ERPs in the SI condition in comparison with the C condition showed an occipital P1-reduction (80–140 ms) and a widely distributed amplitude enhancement of a negative component followed by an amplitude reduction of a positive component (400–560 ms). For response interference, all groups showed a comparable reaction time (RT) delay, but children made more errors than adults. ERPs in the RI condition in comparison with the SI condition showed an amplitude reduction of a positive component over lateral parietal (-occipital) sites in 10–12 year-olds and adults (300–540 ms), and a widely distributed amplitude enhancement of a positive component in all age groups (680–960 ms). The size of the enhancement correlated positively with the RT response interference effect.

Conclusion

Although processes of stimulus interference control as measured with the color-object Stroop task seem to reach mature levels relatively early in childhood (6–7 years), development of response interference control appears to continue into late adolescence as 10–12 year-olds were still more susceptible to errors of response interference than adults.  相似文献   

6.

Background  

Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA)). Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI). Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand.  相似文献   

7.

Background  

Auditory evoked responses can be modulated by both the sequencing and the signal-to-noise ratio of auditory stimuli. Constant sequencing as well as intense masking sounds basically lead to N1m response amplitude reduction. However, the interaction between these two factors has not been investigated so far. Here, we presented subjects tone stimuli of different frequencies, which were either concatenated in blocks of constant frequency or in blocks of randomly changing frequencies. The tones were presented either in silence or together with broad-band noises of varying levels.  相似文献   

8.

Background  

MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126.  相似文献   

9.

Background  

Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition.  相似文献   

10.

Purpose

To classify tumor imaging voxels at-risk for treatment failure within the heterogeneous cervical cancer using DCE MRI and determine optimal voxel's DCE threshold values at different treatment time points for early prediction of treatment failure.

Material and Method

DCE-MRI from 102 patients with stage IB2–IVB cervical cancer was obtained at 3 different treatment time points: before (MRI 1) and during treatment (MRI 2 at 2–2.5 weeks and MRI 3 at 4–5 weeks). For each tumor voxel, the plateau signal intensity (SI) was derived from its time-SI curve from the DCE MRI. The optimal SI thresholds to classify the at-risk tumor voxels was determined by the maximal area under the curve using ROC analysis when varies SI value from 1.0 to 3.0 and correlates with treatment outcome.

Results

The optimal SI thresholds for MRI 1, 2 and 3 were 2.2, 2.2 and 2.1 for significant differentiation between local recurrence/control, respectively, and 1.8, 2.1 and 2.2 for death/survival, respectively.

Conclusion

Optimal SI thresholds are clinically validated to quantify at-risk tumor voxels which vary with time. A single universal threshold (SI = 1.9) was identified for all 3 treatment time points and remained significant for the early prediction of treatment failure.  相似文献   

11.

Background  

Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.  相似文献   

12.
13.

Background  

The hippocampus is a brain region that is particularly affected by age-related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive decline. In a combined cross-sectional behavioural and magnetoencephalography (MEG) study we investigated whether hippocampal-associated neural current flow during a transverse patterning task - which requires learning relational associations between stimuli - correlates with age and whether it is modulated by cognitive competence.  相似文献   

14.

Background  

Targeted transport of messenger RNA and local protein synthesis near the synapse are important for synaptic plasticity. In order to gain an overview of the composition of the dendritic mRNA pool, we dissected out stratum radiatum (dendritic lamina) from rat hippocampal CA1 region and compared its mRNA content with that of stratum pyramidale (cell body layer) using a set of cDNA microarrays. RNAs that have over-representation in the dendritic fraction were annotated and sorted into function groups.  相似文献   

15.

Purpose

The purpose was to describe magnetic resonance imaging (MRI) findings of breast cancer liver metastasis using gadoxetic acid (Gd-EOB-DTPA) with an emphasis on the added value of the hepatobiliary phase (HBP).

Material and methods

Nine patients with 13 liver metastases were included in the study after the medical records of 29 breast cancer patients who underwent Gd-EOB-DTPA-enhanced MRI between February 2008 and June 2010 were reviewed. The diagnoses of liver metastasis were established by percutaneous liver biopsy or surgery and on the basis of image findings. Two radiologists retrospectively evaluated signal intensity (SI) and sizes of metastases and patterns of enhancement in an HBP. The SI ratio was calculated as the SI of the central hyperintense portion in “target” lesions divided by the SI of nearby normal liver parenchyma on the HBP. We also measured apparent diffusion coefficient (ADC) values from Diffusion Weighted Image (DWI).

Results

Liver metastases were all hypointense [n=13/13 (100%)] on T1-weighted imaging (WI), and many lesions had a “target” appearance with a central high SI and a peripheral low SI rim (47%) on T2WI. Dynamic study showed rim enhancement on the arterial phase (85%) and a “target” appearance, consisting of a central enhancing portion with peripheral washout or hypointense rim, on the HBP (62%). The mean SI ratio was 0.7. The mean ADC value of “target” appearing metastases was 1.25 (×10−3 mm2/s; range 1.3–1.6) compared with a mean value of 0.8 (×10−3 mm2/s; range 0.8–1.4) in homogeneous defect on the HBP. There was statistically significant difference (P<.05).

Conclusion

Breast cancer liver metastases commonly demonstrated as a peripheral ring enhancement on arterial dominant phase and a target sign with a central round enhancing portion and a peripheral hypointense rim on the HBP.  相似文献   

16.

Background  

Attending to a point in space in one modality may facilitate processing to information from the same region in another modality. The involvement of sensory-specific cortical areas in intramodal and crossmodal selective spatial attention can be assessed with event-related brain potentials (ERPs).  相似文献   

17.

Background  

The extent of similarity between consolidation and reconsolidation is not yet fully understood. One of the differences noted is that not every brain region involved in consolidation exhibits reconsolidation. In trace fear conditioning, the hippocampus and the medial prefrontal cortex (mPFC) are required for consolidation of long-term memory. We have previously demonstrated that trace fear memory is susceptible to infusion of the protein synthesis inhibitor anisomycin into the hippocampus following recall. In the present study, we examine whether protein synthesis inhibition in the mPFC following recall similarly results in the observation of reconsolidation of trace fear memory.  相似文献   

18.

Objective

The objective of this study was to retrospectively analyze the value of dynamic half-Fourier single-shot turbo spin echo (HASTE) imaging in patients with suspected deep venous thrombosis (DVT).

Materials and Methods

Fifty-five veins in 24 patients were interrogated using a HASTE sequence with the patients relaxed and in various degrees of Valsalva. Veins were analyzed for changes in caliber (+CAL) and signal intensity (+SI) or in their absence (−CAL and −SI, respectively) and compared with the presence of thrombus on gadolinium-enhanced magnetic resonance imaging.

Results

There was no thrombus in veins with the +CAL, +SI pattern (n=40) (P<.01). Five of seven veins (71.4%) with the −CAL, −SI pattern had thrombus (P<.01). A qualitative change in CAL had a sensitivity of 100% and a specificity of 91% for the presence of thrombus. An increase of 1.5 mm in CAL had a sensitivity of 100% and a specificity of 93% for this diagnosis.

Conclusion

Dynamic HASTE imaging offers a physiological method to evaluate veins for deep venous thrombosis.  相似文献   

19.

Background  

Anesthesia is produced by a depression of central nervous system function, however, the sites and mechanisms of action underlying this depression remain poorly defined. The present study compared and contrasted effects produced by five general anesthetics on synaptic circuitry in the CA1 region of hippocampal slices.  相似文献   

20.

Background  

Although being widespread in the hippocampus, the role tachykinins play in synaptic transmission is unclear. The effect of substance P on field potentials evoked by stimulation of the Schaffer collateral-commissural fibres and recorded from the CA1 region of the rat hippocampal slice were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号