首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of interactive networks between proteins and other molecular constituents is of paramount importance to delineate complex cellular processes. In order to facilitate this process, new technologies that allow rapid, high-throughput parallel screening, as well as identification of constituents, are necessary. A particularly powerful combination in this regard could be the use of multiprotein microarrays coupled with mass spectrometry (MS). In the initial step of the method development we applied MS to single-protein microarrays. We demonstrated that even a simplified version of the method allows rapid parallel label-free assay of specific protein interactions with multiple metabolites derived from complex artificial and natural mixtures. The microarrays fabricated by the electrospray deposition technique and cross-linked in glutaraldehyde vapor were brought into contact with droplets of solution containing either a natural extract of baker's yeast cells or an artificial cocktail of metabolites. After washing, the microarrays were placed into 75% methanol to denature proteins and release specifically bound metabolites. The eluates were then analyzed by electrospray ionization mass spectrometry (ESI-MS) to simultaneously detect all the metabolites bound. Such a procedure applied to ten different proteins demonstrated that 50-400 ng of cross-linked protein is enough to obtain ion intensities from metabolites that are well distinguishable above noise. The compatibility of microplates and different microarray designs with MS detection is discussed.  相似文献   

2.
3.
Various repertoires of membrane protein interactions determine cellular responses to diverse environments around cells dynamically in space and time. Current assays, however, have limitations in unraveling these interactions in the physiological states in a living cell due to the lack of capability to probe the transient nature of these interactions on the crowded membrane. Here, we present a simple and robust assay that enables the investigation of transient protein interactions in living cells by using the single-molecule diffusional mobility shift assay (smDIMSA). Utilizing smDIMSA, we uncovered the interaction profile of EGFR with various membrane proteins and demonstrated the promiscuity of these interactions depending on the cancer cell line. The transient interaction profile obtained by smDIMSA will provide critical information to comprehend the crosstalk among various receptors on the plasma membrane.Subject terms: Fluorescence imaging, Super-resolution microscopy, Single-molecule biophysics  相似文献   

4.
This paper describes the fabrication of microarrays consisting of G protein-coupled receptors (GPCRs) on surfaces coated with gamma-aminopropylsilane (GAPS). Microspots of model membranes on GAPS-coated surfaces were observed to have several desired properties-high mechanical stability, long range lateral fluidity, and a thickness corresponding to a lipid bilayer in the bulk of the microspot. GPCR arrays were obtained by printing membrane preparations containing GPCRs using a quill-pin printer. To demonstrate specific binding of ligands, arrays presenting neurotensin (NTR1), adrenergic (beta1), and dopamine (D1) receptors were treated with fluorescently labeled neurotensin (BT-NT). Fluorescence images revealed binding only to microspots corresponding to the neurotensin receptor; this specificity was further demonstrated by the inhibition of binding in the presence of excess unlabeled neurotensin. The ability of GPCR arrays to enable selectivity studies between the different subtypes of a receptor was examined by printing arrays consisting of three subtypes of the adrenergic receptor: beta1, beta2, and alpha2A. When treated with fluorescently labeled CGP 12177, a cognate antagonist analogue specific to beta-adrenergic receptors, binding was only observed to microspots of the beta1 and beta2 receptors. Furthermore, binding of labeled CGP 12177 was inhibited when the arrays were incubated with solutions also containing ICI 118551, and in a manner consistent with the higher affinity of ICI 118551 for the beta2 receptor relative to that for the beta1 receptor. The ability to estimate binding affinities of compounds using GPCR arrays was examined using a competitive binding assay with BT-NT and unlabeled neurotensin on NTR1 arrays. The estimated IC(50) value (2 nM) for neurotensin is in agreement with the literature; this agreement suggests that the receptor -G protein complex is preserved in the microspot. This first ever demonstration of direct pin-printing of membrane proteins and ligand-binding assays thereof fills a significant void in protein microchip technology--the lack of practical microarray-based methods for membrane proteins.  相似文献   

5.
One of the principal challenges in systems biology is to uncover the networks of protein-protein interactions that underlie most biological processes. To date, experimental efforts directed at this problem have largely produced only qualitative networks that are replete with false positives and false negatives. Here, we describe a domain-centered approach--compatible with genome-wide investigations--that enables us to measure the equilibrium dissociation constant (K(D)) of recombinant PDZ domains for fluorescently labeled peptides that represent physiologically relevant binding partners. Using a pilot set of 22 PDZ domains, 4 PDZ domain clusters, and 20 peptides, we define a gold standard dataset by determining the K(D) for all 520 PDZ-peptide combinations using fluorescence polarization. We then show that microarrays of PDZ domains identify interactions of moderate to high affinity (K(D) < or = 10 microM) in a high-throughput format with a false positive rate of 14% and a false negative rate of 14%. By combining the throughput of protein microarrays with the fidelity of fluorescence polarization, our domain/peptide-based strategy yields a quantitative network that faithfully recapitulates 85% of previously reported interactions and uncovers new biophysical interactions, many of which occur between proteins that are co-expressed. From a broader perspective, the selectivity data produced by this effort reveal a strong concordance between protein sequence and protein function, supporting a model in which interaction networks evolve through small steps that do not involve dramatic rewiring of the network.  相似文献   

6.
We have recently devised a method to quantify interactions between a membrane protein (“bait”) and a fluorophore-labeled protein (“prey”) directly in the live-cell plasma membrane (Schwarzenbacher et al. Nature Methods 5:1053–1060 2008). The idea is to seed cells on surfaces containing micro-patterned antibodies against the exoplasmic domain of the bait, and monitor the co-patterning of the fluorescent prey via fluorescence microscopy. Here, we characterized the time course of bait and prey micropattern formation upon seeding the cells onto the micro-biochip. Patterns were formed immediately after contact of the cells with the surface. Cells were able to migrate over the chip surface without affecting the micropattern contrast, which remained constant over hours. On single cells, bait contrast may be subject to fluctuations, indicating that the bait can be released from and recaptured on the micropatterns. We conclude that interaction studies can be performed at any time-point ranging from 5 min to several hours post seeding. Monitoring interactions with time opens up the possibility for new assays, which are briefly sketched in the discussion section.  相似文献   

7.
We report a carbohydrate microarray-based approach for the rapid, facile analysis of glycosaminoglycan-protein interactions. The key structural determinants responsible for protein binding, such as sulfate groups that participate in the interactions, were elucidated. Specificities were also readily compared across protein families or functional classes, and comparisons among glycosaminoglycan subclasses provided a more comprehensive understanding of protein specificity. To validate the approach, we showed that fibroblast growth factor family members have distinct sulfation preferences. We also demonstrated that heparan sulfate and chondroitin sulfate interact in a sulfation-dependent manner with various axon guidance proteins, including slit2, netrin1, ephrinA1, ephrinA5, and semaphorin5B. We anticipate that these microarrays will accelerate the discovery of glycosaminoglycan-binding proteins and provide a deeper understanding of their roles in regulating diverse biological processes.  相似文献   

8.
Carbohydrate-protein interactions on surface and in solution were quantitatively measured by a glycan microarray. Assessing carbohydrate affinities is typically difficult due to weak affinities and limited sources of structurally complex glycans. We described here a sensitive, high-throughput, and convenient glycan microarray technology for the simultaneous determination of a wide variety of parameters in a single experiment using small amounts of materials. Assay systems based on this technology were developed to analyze multivalent interactions and determine the surface dissociation constant (KD,surf) for surface-coated mannose derivatives with mannose binding lectins and antibodies. Competition experiments that employed monovalent ligands in solution yielded KD and Ki values in solution similar to equilibrium binding constants obtained in titration microcalorimetry and surface plasmon resonance experiments.  相似文献   

9.
Technology and applications of protein microarrays   总被引:2,自引:0,他引:2  
Analytical and Bioanalytical Chemistry -  相似文献   

10.
A surface patterning method based on noncovalent immobilization of fluorous-tagged sugars on fluorous-derivatized glass slides allows the facile fabrication of carbohydrate microarrays. To expand the scope of these arrays, the first syntheses are reported of arabinose, rhamnose, lactose, maltose, and glucosamine tagged with a single C8F17-tail for ease of purification as well as array formation. Screening of these carbohydrate microarrays against lectins from Triticum vulgaris (WGA) and Arachis hypogaea (PNA) demonstrate that the noncovalent fluorous–fluorous interaction is sufficient to retain not only mono- but also disaccharides under the biological assay conditions.  相似文献   

11.
Active bead-linked immunoassay on protein microarrays   总被引:1,自引:0,他引:1  
Protein microarrays are becoming a powerful tool in proteome, biochemical, and clinical studies. In addition to the quality of arrayed immobilized probe molecules, sensitivity of the microarray-based assay is highly dependent on the detection technique. Here we suggest four simple techniques for rapid detection of analytes bound to protein microarrays. The techniques employ functionalized magnetic and non-magnetic beads moved to, from, or along the array surface by external forces. In contrast to other labeling techniques actively controlled physical labels: (i) make detection extremely fast to allow microarray reading in seconds; (ii) provide a low background due to active removal of weakly bound beads; and (iii) provide a highly sensitive detection, since one antigen-antibody bond is capable of holding bead immobilized on the array surface. In combination with the electrophoretically assisted active immunoassay we described recently such active reading allows to reduce total indirect immunoassay time to 7-10 min while having sensitivity in the femtomolar concentration range. High speed, sensitivity, and specificity make active bead-linked detection an ideal choice in rapid high-throughput screening and in emergency diagnostics.  相似文献   

12.
Defining HIV envelope glycoprotein interactions with host factors or binding partners advances our understanding of the infectious process and provides a basis for the design of vaccines and agents that interfere with HIV entry. Here we employ carbohydrate and glycoprotein microarrays to analyze glycan-dependent gp120-protein interactions. In concert with new linking chemistries and synthetic methods, the carbohydrate arrays combine the advantages of microarray technology with the flexibility and precision afforded by organic synthesis. With these microarrays, we individually and competitively determined the binding profiles of five gp120 binding proteins, established the carbohydrate structural requirements for these interactions, and identified a potential strategy for HIV vaccine development.  相似文献   

13.
Classification of protein microarrays and related techniques   总被引:2,自引:0,他引:2  
Analytical and Bioanalytical Chemistry -  相似文献   

14.
Despite the importance of lipid/protein interactions in the folding, assembly, stability, and function of membrane proteins, information at an atomic level on how such proteins interact with the lipids that surround them remains sparse. The dynamics and flexible nature of the protein/bilayer interaction make it difficult to study, for example, by crystallographic means. However, based on recent progress in molecular simulations of membranes it is possible to address this problem computationally. This communication reports one of the first attempts to use multiple ns molecular simulations to establish a qualitative picture of the intermolecular interactions between the lipids of a bilayer and two topologically different membrane proteins for which a high resolution (2 A or better) X-ray structure is available.  相似文献   

15.
The technology of DNA microarrays on porous membrane supports with colorimetric detection on horseradish peroxidase was developed. Comparison of the methods of oligonucleotide immobilization on chemically different membranes was carried out and the conditions of colorimetric detection of biotin in DNA duplexes on microarray surface were optimized. The method that was developed was applied for determining the type of genes encoding extended-spectrum β lactamases.  相似文献   

16.
Peptide–lipid interactions play an important role in defining the mode of action of drugs and the molecular mechanism associated with many diseases. Model membranes consisting of simple lipid mixtures mimicking real cell membranes can provide insight into the structural and dynamic aspects associated with these interactions. Small-angle scattering techniques based on X-rays and neutrons (SAXS/SANS) allow in situ determination of peptide partition and structural changes in lipid bilayers in vesicles with relatively high resolution between 1-100 nm. With advanced instrumentation, time-resolved SANS/SAXS can be used to track equilibrium and nonequilibrium processes such as lipid transport and morphological transitions to time scales down to a millisecond. In this review, we provide an overview of recent advances in the understanding of complex peptide–lipid membrane interactions using SAXS/SANS methods and model lipid membrane unilamellar vesicles. Particular attention will be given to the data analysis, possible pitfalls, and how to extract quantitative information using these techniques.  相似文献   

17.
Affinity chromatography with Protein A beads has become the conventional unit operation for the primary capture of monoclonal antibodies. However, Protein A activated supports are expensive and ligand leakage is an issue to be considered. In addition, the limited production capabilities of the chromatographic process drive the research towards feasible alternatives. The use of synthetic ligands as Protein A substitutes has been considered in this work. Synthetic ligands, that mimic the interaction between Protein A and the constant fragment (Fc) of immunoglobulins, have been immobilized on cellulosic membrane supports. The resulting affinity membranes have been experimentally characterized with pure immunoglobulin G (IgG). The effects of the membrane support and of the spacer arm on the ligand–ligate interaction have been studied in detail. Experimental data have been compared with molecular dynamic simulations with the aim of better understanding the interaction mechanisms. Molecular dynamic simulations were performed in explicit water, modelling the membrane as a matrix of overlapped glucopyranose units. Electrostatic charges of the ligand and spacer were calculated through ab initio methods to complete the force field used to model the membrane. The simulations enabled to elucidate how the interactions of surface, spacer and ligand with IgG, contribute to the formation of the bond between protein and affinity membrane.  相似文献   

18.
19.
RNA is an important target for drug discovery efforts. Several clinically used aminoglycoside antibiotics bind to bacterial rRNA and inhibit protein synthesis. Aminoglycosides, however, are losing efficacy due to their inherent toxicity and the increase in antibiotic resistance. Targeting of other RNAs is also becoming more attractive thanks to the discovery of new potential RNA drug targets through genome sequencing and biochemical efforts. Identification of new compounds that target RNA is therefore urgent, and we report here on the development of rapid screening methods to probe binding of low molecular weight ligands to proteins and RNAs. A series of aminoglycosides has been immobilized onto glass microscope slides, and binding to proteins and RNAs has been detected by fluorescence. Construction and analysis of the arrays is completed by standard DNA genechip technology. Binding of immobilized aminoglycosides to proteins that are models for study of aminoglycoside toxicity (DNA polymerase and phospholipase C), small RNA oligonucleotide mimics of aminoglycoside binding sites in the ribosome (rRNA A-site mimics), and a large (approximately 400 nucleotide) group I ribozyme RNA is detected. The ability to screen large RNAs alleviates many complications associated with binding experiments that use isolated truncated regions from larger RNAs. These studies lay the foundation for rapid identification of small organic ligands from combinatorial libraries that exhibit strong and selective RNA binding while displaying decreased affinity to toxicity-causing proteins.  相似文献   

20.
The interaction energy of a charged protein with zwitterionic and charged lipid bilayers is calculated and compared with recent experimental results. Calculations and available data suggest that the electrostatic (el) contribution to the binding of typical signal transduction proteins has been hitherto greatly exaggerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号