首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A series of polyarylates having inherent viscosities of 0.4–1.1 dL/g was prepared by the two phase polycondensation of 1,1,3-trimethyl-3-(4-chloroformylphenyl)indanecarbonyl chloride with various bisphenols in an organic solvent–aqueous alkaline solution system in the presence of a phase transfer catalyst. Similarly, copolyarylates of high molecular weights were prepared from a mixture of the phenylindanedicarbonyl chloride, terephthaloyl chloride, and 2,2-bis(4-hydroxy-phenyl)propane. All the polyarylates were characterized by their amorphous nature and high solubility in organic solvents. They gave transparent and tough films by the solution casting. The films had tensile strength of 33–46 MPa, elongation at break of 3–16%, and tensile modulus of 1.2–1.6 GPa. These polyarylates had glass transition temperatures in the range of 205–310°C, and began to decompose at ca. 350°C in air.  相似文献   

2.
New 1,4‐naphthyl and 2,6‐naphthyl‐containing polyarylates having inherent viscosities up to 1.28 dL/g were synthesized by the high‐temperature solution polycondensation from the acid chloride of 1,4‐bis(4‐carboxyphenoxy)naphthyl or 2,6‐bis(4‐carboxyphenoxy)naphthyl and various bisphenols. Most of the resulting polyarylates showed amorphous characteristics and were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), o‐chlorophenol, and chloroform. Transparent, flexible, and colorless films of these polymers could be cast from the DMAc solutions. Their cast films had tensile strengths ranging from 54.9 to 84.2 MPa, elongations at break from 5.3% to 19.0%, and initial modulus from 2.0 to 2.8 GPa. These polymers had glass transition temperatures in the range of 172–280°C and began to lose weight around 400°C, with 10% weight loss being recorded at about 450°C in air. Dynamic mechanical analysis (DMA) reveals that the polyarylates containing isopropylidene linkages have three transitions on the temperature scale between −100 and 300°C. However, only two transitions were observed in the other polyarylates without isoproylidene linkage. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 645–652, 1999  相似文献   

3.
Polyarylates containing a t-butyl pendant group were prepared from 5-t-butylisophthaloyl chloride and various bisphenols through the phase-transfer catalyzed two-phase polycondensation. The polyarylates having inherent viscosities up to 3.1 dL/g were obtained quantitatively. They were readily soluble in various solvents such as chloroform, m-cresol, and pyridine. Coloreless, transparent, and flexible films could be cast from the chloroform solutions of the polymers. The polyarylates had glass transition temperatures between 210 and 320°C, and did not lose weight below 350°C, with 10% weight loss being recorded at 395–450°C in air.  相似文献   

4.
A series of novel perfluorononenyloxy group containing polyarylates were synthesized by a high-temperature solution condensation of 5-(perfluorononenyloxy)-isophthaloyl chloride ( II ) with various aromatic diols in o-dichlorobenzene. All the polyarylates were amorphous and readily soluble in many organic solvents such as o-chlorophenol, o-dichlorobenzene, chloroform, and polar aprotic solvents at room temperature or on heating. Transparent, tough, and flexible films of these polymers could be cast from the o-chlorophenol solutions. The polymers having inherent viscosity of 0.61–1.63 dL/g were obtained in quantitative yields. These polymers were thermally quite stable. The glass transition temperatures of these polyarylates were in the range of 219–242°C by DSC and 224–251°C by DMA, and the 10% weight loss temperatures in nitrogen and air were above 415 and 397°C, respectively. Moreover, these polymers maintained good mechanical properties (G′ ∼ 108 Pa) up to 220°C and had lower moisture absorption than common polyarylates. The dielectric constants of these polymers ranged from 3.23 to 3.75. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 645–653, 1998  相似文献   

5.
Fluorine-containing polyarylates having inherent viscosities of 0.2–0.8 dL/g were prepared from tetrafluoroisophthaloyl chloride and various bisphenols by low temperature solution polycondensation in chloroform with triethylamine or by two-phase polycondensation in a dichloromethane-water or nitrobenzene-water system with benzyltriethylammonium chloride as the phase transfer catalyst. These polyarylates were amorphous and were readily soluble in various solvents, including chloroform and N-methyl-2-pyrrolidone. The glass transition temperature of the polymer derived from 2,2-bis(4-hydroxyphenyl) propane was 150°C. These polyarylates started to lose weight around 350°C in an air or nitrogen atmosphere.  相似文献   

6.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

7.
Poly(arylene ether)s containing N-arylenebenzimidazole groups were prepared by the aromatic nucleophilic displacement reaction of two new bis(hydroxyphenyl-N-arylenebenzimidazole)s with activated aromatic difluorides in sulfolane at 200°C in the presence of anhydrous potassium carbonate. The bis(hydroxyphenyl-N-arylenebenzimidazole)s were prepared from bis(o-aminoanilino) arylenes and phenyl-4-hydroxybenzoate. The polymers were soluble in N-methyl-2-pyrrolidinone and m-cresol and exhibited inherent viscosities from 0.37–0.86 dL/g and glass transition temperatures from 219–289°C. Thermogravimetric analyses showed 5% weight losses from 463–506°C in air and 467–522°C in nitrogen. Unoriented thin films exhibited tensile strengths, moduli, and break elongations at 23°C of 10.2–12.5 ksi, 318–365 ksi, and 4–7%, respectively, and at 177°C of 5.1–6.9 ksi, 256–296 ksi, and 1–5%, respectively. A 50 : 50 random copolymer prepared from 1,3-bis(4-fluorobenzoyl) benzene, 1,1'-(4,4'-biphenylene)-bis[2-(4-hydroxyphenyl)benzimidazole], and 5,5'-bis[2-(4-hydroxyphenyl)benzimidazole] exhibited higher moisture absorption and lower tensile properties than those predicted by a rule of mixtures relationship. The chemical, physical, and mechanical properties of these polymers are discussed. © 1993 John Wiley & Sons, Inc.?  相似文献   

8.
Polyarylates having inherent viscosities up to 1.02 dL/g were synthesized both by the phase-transfer catalyzed two-phase polycondensation of 2,2′-bibenzoyl chloride with various bisphenols and by the high-temperature solution polycondensation of biphenyl-2,2′-diol with aromatic dicarboxylic acid chlorides. All the polyarylates were amorphous and soluble in a variety of organic solvents including N,N-dimethylformamide, N-methyl–2-pyrrolidone, chloroform, m-cresol, and pyridine. Transparent and flexible films of these polymers could be cast from the chloroform solutions. These polyarylates had glass transition temperatures in the range of 120–250°C and began to lose weight at around 380°C in air. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
A novel monomer of tetrachloroterephthaloyl chloride (TCTPC) was prepared by the chlorination of terephthaloyl chloride catalyzed by ferric chloride at 175‐180 °C for 10 h, and confirmed by FTIR, MS and elemental analysis. A series of new polychloro substituted poly(aryl ether ketone)s with inherent viscosities of 0.58‐0.65 dL/g have been prepared from TCTPC with aromatic ether monomers by electrophilic Friedel‐Crafts acylation in the presence of DMF with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane. Glass‐transition temperatures of these polychlorinated polymers ranged from 267 to 280 °C by DSC. The degradation temperature at 5% weight loss by TGA in nitrogen for these polymers ranged from 486 to 534 °C, and the char yields at 700 °C were 54‐65%. The polymers having a weight‐average molecular weight in the range of 65,900‐79,300 are all amorphous and readily soluble in polar solvents such as DMF, DMSO and NMP at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 86.1‐99.7 MPa, Young's moduli of 2.32‐3.35 GPa, and elongations at break of 10‐15%.  相似文献   

10.
To obtain poly(vinyl chloride) (PVC) of excellent toughness, a new method of crosslinking PVC is proposed in which PVC is crosslinked with the soft segment in an elastomer such as liquid Thiokol. The reaction can be accomplished by immersing PVC–Thiokol blends in liquid ammonia at 20–30°C. A similar reaction occurs in aqueous ammonia when hexamethylphosphoramide is used as an activator. Characteristics of the crosslinked PVC thus obtained and of the controls of a similar uncrosslinked composition (PVC–Thiokol LP-8, 100:5 by weight) were as follows: tensile strength, 7.3 and 4.8 kg/mm2; elongation at break, 30 and 2.5%; Young's modulus, 3.5 × 104 and 2.9 × 104 kg/cm2; tensile impact, 88 and 15 kg-cm/cm3, respectively. The crosslinked PVC as plasticized with dioctyl phthalate (DOP) and the control blend (PVC–Thiokol LP-8–DOP, 100:10:10 by weight), respectively, showed tensile strengths of 5.9 and 4.8 kg/mm2, elongations at break of 44 and 24%, Young's moduli of 2.5 × 104 and 1.6 × 104 kg/cm2, and tensile impact strengths of 62 and 120 kg-cm/cm3. As the crosslinkage through the soft segments increases up to about 5%, the elongation at break, Young's modulus, and tensile impact, in addition to the tensile strength, are improved. This is different from the results so far observed with the crosslinked amorphous polymers and is characteristic of the products of crosslinking through the soft segment. The experimental results are discussed in this paper.  相似文献   

11.
Novel poly(enamine-ketones) were prepared with inherent viscosities as high as 1.99 dL/g using the Michael-type addition of various diamines to 1,1′-(1,3 or 1,4-phenylene)bis(3-phenyl-2-propyn-1-one) in m-cresol at 60–130°C. Tough, clear, amber films with tensile strengths of 12, 400 psi and tensile moduli of 397, 000 psi were cast from solutions of the polymers in chloroform. The polymers exhibited Tgs as high as 235°C and weight losses of 14% after aging at 232°C in circulating air for 60 h. The synthesis and characterization of several poly(enamine-ketones) are discussed.  相似文献   

12.
A new aromatic diamine, 4-(4-trifluoromethyl)phenyl-2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]pyridine, was synthesized by a modified Chichibabin reaction of 4-(4-nitro-2-trifluoromethylphenoxy)acetophenone with 4-triflouromethylbenzaldehyde, followed by catalytic reduction. A series of fluorinated pyridine-containing aromatic poly(ether imide)s (PEIs) were prepared from the diamine monomer with various aromatic dianhydrides via conventional two-step thermal imidization method. The resulting PEIs had inherent viscosities values of 0.68–0.90 dL/g, and could be cast and thermally converted into transparent, flexible, and tough polymer films. These PEIs were predominantly amorphous, had good solubility in common solvents such as NMP, DMAc and m-cresol at room temperature, and displayed excellent thermal stability with the glass transition temperatures of 258–315?°C, the temperatures at 5% weight loss of 550–585?°C, and the residue of higher than 55% at 750?°C in nitrogen. Moreover, the PEIs films showed outstanding mechanical properties with tensile strengths of 74.8–103.5?MPa, tensile moduli of 1.08–1.45?GPa, and elongations at break of 10.6–24.4%. These PEIs also exhibited low dielectric constants of 2.81–2.98 (1?MHz) and water uptake 0.39–0.68%, as well as high optical transparency with the UV cutoff wavelength in the 350–378?nm range and the wavelength of 80% transparency in the range of 412–510?nm.  相似文献   

13.
Poly(arylene ether imidazole)s were prepared by the aromatic nucleophilic displacement reaction of a bisphenol imidazole with activated aromatic dihalides. The polymers had glass transition temperatures ranging from 230 to 318°C and number-average molecular weights as high as 82,000 g/mol. Thermogravimetric analysis showed a 5% weight loss occurring ~ 400°C in air and ~ 500°C in nitrogen. Typical neat resin mechanical properties obtained at room temperature included tensile strength and tensile modulus of 14.2 and 407 ksi and fracture energy (Glc) of 23 in. lb/in.2 Titanium-to-titanium tensile shear strengths measured at 23 and 200°C were 4800 and 3000 psi, respectively. In addition, preliminary data were obtained on carbon fiber laminates. The chemistry, physical, and mechanical properties of these polymers are discussed.  相似文献   

14.
A series of new soluble poly(amide‐imide)s were prepared from the diimide‐dicarboxylic acid 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane with various diamines by direct polycondensation in N‐methyl‐2‐pyrrolidinone containing CaCl2 with triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.52–0.86 dL · g?1. The poly(amide‐imide)s showed an amorphous nature and were readily soluble in various solvents, such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, and cyclohexanone. Tough and flexible films were obtained through casting from DMAc solutions. These polymer films had tensile strengths of 71–107 MPa and a tensile modulus range of 1.6–2.7 GPa. The glass‐transition temperatures of the polymers were determined by a differential scanning calorimetry method, and they ranged from 242 to 279 °C. These polymers were fairly stable up to a temperature around or above 400 °C, and they lost 10% of their weight from 480 to 536 °C and 486 to 537 °C in nitrogen and air, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3498–3504, 2001  相似文献   

15.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

16.
A series of new strictly alternating aromatic poly(ester‐imide)s having inherent viscosities of 0.20–0.98 dL/g was synthesized by the diphenylchlorophosphate (DPCP) activated direct polycondensation of the preformed imide ring‐containing diacid, 3,3‐bis[4‐(trimellitimidophenoxy)phenyl]phthalide (I), with various bisphenols in a medium consisting of pyridine and lithium chloride. The diimide–diacid I was prepared from the condensation of 3,3‐bis[4‐(4‐aminophenoxy)phenyl]phthalide and trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc). Transparent and flexible films of these polymers could be cast from their DMAc solutions. The cast films had tensile strengths ranging 66–105 MPa, elongations at break from 7–10%, and initial moduli from 1.9–2.4 GPa. The glass‐transition temperatures of these polymers were recorded between 208–275 °C. All polymers showed no significant weight loss below 400 °C in the air or in nitrogen, and the decomposition temperatures at 10% weight loss all occurred above 460 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1090–1099, 2000  相似文献   

17.
《先进技术聚合物》2018,29(4):1344-1356
Three nanocomposite films based on aramid (poly (ether‐amide), PEA) and multiwall carbon nanotubes (MWCNT) were prepared via solution casting method using 2,7‐bis(4‐aminophenoxy)naphthalene (4) and isophthalic acid (5) containing various amounts of MWCNT (2, 3, 5 wt.%). To comprehensively analyze the properties of the cast films as well as the monomers, different techniques were employed, namely FT‐IR, 1H NMR, X‐ray diffraction, and field emission scanning electron microscopy. Also, thermal and tensile properties of PEA (6) and nanocomposite films were investigated using thermogravimetric analysis and mechanical analysis, respectively. The morphology, thermal, and mechanical properties of nanocomposite films approved that MWCNT had well dispersion in the PEA matrix and showed a synergistic effect on improving all of the investigated properties. Based on the thermogravimetric analysis results, employing MWCNT caused to increase in the char yields from 61 (in the neat PEA) to 66 (in the PEA /MWCNT nanocomposite 5 wt.%) under the nitrogen atmosphere. In comparison to the pristine PEA (426°C), the temperature at 10 losses mass % (T10) was increased from 530°C to 576°C, with 2 to 5 wt.% of MWCNT. Mechanical analysis revealed that the tensile strength and initial modulus were improved by incorporating MWCNT into PEA (81.70–93.40 MPa and 2.10–2.22 GPa, respectively). Electrical conductivity of the PEA/MWCNT nanocomposites was displayed maximum value in the 5 wt.%, showing satisfactory value in many application areas. The X‐ray diffraction technique was employed to study the crystalline structure of the prepared nanocomposite films as well as PEA. In addition, the electrochemical impedance spectroscopy study demonstrated that the prepared nanocomposites had significant impedance improvement in the presence of MWCNTs.  相似文献   

18.
Three types of new bis(ether dianhydride) monomers, [4,4′‐(2‐(3′‐methylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4a)], [4,4′‐(2‐(3′‐trifluoromethylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4b)], and [4,4′‐(2‐(3′,5′‐ditrifluoromethylphenyl)‐1,4‐phenylenedioxy)‐diphthalic anhydride (4c)] were prepared via a multistep reaction sequence. Three series of soluble poly(ether imide)s (PEIs) were prepared from the obtained dianhydrides by a two‐step chemical imidization method. Experimental results indicated that all the PEIs had glass transition temperature in the range of 200–230 °C and the temperature of 5% weight loss in the range of 520–590 °C under nitrogen. The PEIs showed excellent solubility in a variety of organic solvents due to introduction of the bulky pendant groups and were capable of forming tough films. The casting films of PEIs (80–91 μm in thickness) had tensile strengths in the range from 88 to 117 MPa, tensile modulus from 2.14 to 2.47 GPa, and elongation at break from 15 to 27%. The casting films showed UV‐Vis absorption edges at 357–377 nm, low dielectric constants of 2.73–2.82, and water uptakes lower than 0.66 wt %. The spin‐coated films of PEIs presented a minimum birefringence value as low as 0.0122 at 650 nm and low optical absorption at the optical communication wavelengths of 1310 and 1550 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3281–3289, 2010  相似文献   

19.
New fluorinated polyamides were prepared directly from a diamine, 9,9‐bis[4‐(2‐trifluoromethyl‐4‐aminophenoxy)phenyl]xanthene ( BTFAPX ) with various aromatic dicarboxylic acid chlorides by low‐temperature polycondensation. The polymers were produced with moderate‐to‐high inherent viscosities of 0.65–1.01 dl/g while the weight‐average molecular weight and number‐average molecular weight were in the range of 69,000–82,000 and 39,000–43,000, respectively. Nearly all the polymers were readily soluble in amide‐type polar aprotic solvents [e.g. N, N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidinone], and even in less polar solvents such as dimethyl sulfoxide and pyridine, and afforded transparent, light‐colored, and flexible films upon casting from DMAc solvent. The polymers showed glass transition temperatures between 235 and 284°C, and 10% weight loss temperatures ranging from 495 to 532°C and 476 to 510°C in nitrogen and air, respectively, and char yields higher than 55% at 800°C in nitrogen. All polymers were amorphous and their films exhibited tensile strengths of 64–95 MPa, elongations at break of 6–9%, and tensile moduli of 1.9–2.5 GPa. These polymers had dielectric constants ranging from 3.65 to 4.03 (100 Hz), low‐moisture absorption in the range of 0.56–1.14%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 334–372 nm range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Considering the importance of the nanocomposites, the present work focuses on some new hybrid materials prepared by introducing reactive organoclay (OC) into the chiral poly(amide-imide) (PAI) matrix. At first, Cloisite Na+ was modified with protonated l-isoleucine amino acid. Then, PAI containing phenylalanine was synthesized via solution polycondensation of chiral diacid chloride with 4,4′-diaminodiphenylsulfone and was characterized with Fourier transform infrared (FTIR) and 1H NMR techniques. At last, PAI/OC nanocomposite films containing 2, 5, 10, and 15 % of OC were prepared via solution intercalation method. The effect of OC dispersion and the interaction between OC and polymer chains on the properties of nanocomposites were investigated using FTIR, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, tensile testing of thin films, and thermogravimetry analysis techniques. The thermal stability of hybrids such as the decomposition temperature and mass residue at 800 °C was improved. Mechanical data indicated improvement in the tensile strength of the nanocomposites with OC loading up to 10 wt%. The transparency of the hybrid films was investigated by means of UV–Vis spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号