首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Aldehyde dehydrogenase 1A3 (ALDH1A3) has recently gained attention from researchers in the cancer field. Several studies have reported ALDH1A3 overexpression in different cancer types, which has been found to correlate with poor treatment recovery. Therefore, finding selective inhibitors against ALDH1A3 could result in new treatment options for cancer treatment. In this study, ALDH1A3-selective candidates were designed based on the physiological substrate resemblance, synthesized and investigated for ALDH1A1, ALDH1A3 and ALDH3A1 selectivity and cytotoxicity using ALDH-positive A549 and ALDH-negative H1299 cells. Two compounds (ABMM-15 and ABMM-16), with a benzyloxybenzaldehyde scaffold, were found to be the most potent and selective inhibitors for ALDH1A3, with IC50 values of 0.23 and 1.29 µM, respectively. The results also show no significant cytotoxicity for ABMM-15 and ABMM-16 on either cell line. However, a few other candidates (ABMM-6, ABMM-24, ABMM-32) showed considerable cytotoxicity on H1299 cells, when compared to A549 cells, with IC50 values of 14.0, 13.7 and 13.0 µM, respectively. The computational study supported the experimental results and suggested a good binding for ABMM-15 and ABMM-16 to the ALDH1A3 isoform. From the obtained results, it can be concluded that benzyloxybenzaldehyde might be considered a promising scaffold for further drug discovery aimed at exploiting ALDH1A3 for therapeutic intervention.  相似文献   

2.
Acetaldehyde dehydrogenase 1A1 is a hopeful therapeutic target to ovarian cancer. In this present work, 3D-QSAR, molecular docking and molecular dynamics(MD) simulations were implemented on a series of quinoline-based ALDH1A1 inhibitors to investigate novel acetaldehyde dehydrogenase 1A1 inhibitors as anticancer adjuvant drugs for ovarian cancer. Two reliable CoMFA(Q~2 = 0.583, R~2 = 0.967) and CoMSIA(Q~2 = 0.640, R~2 = 0.977) models of ALDH1A1 inhibitors were established. Novel ALDH1A1 inhibitors were predicted by the 3D-QSAR models. Molecular docking reveals important residues for protein-compound interactions, and the results revealed ALDH1A1 inhibitors had stronger electrostatic interaction and binding affinity with key residues of protein, such as Phe171, Val174 and Cys303. Molecular dynamics simulations further verified the results of molecular docking. The above information provided significant guidance for the design of novel ALDH1A1 inhibitors.  相似文献   

3.
Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π‐stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility.  相似文献   

4.
Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π‐stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility.  相似文献   

5.
Aldehyde dehydrogenases (ALDH) are a family of enzymes primarily involved in the oxidation of various aldehydes. Most ALDH enzymes derived from mammalian sources have been shown to exist as homotetramers, consisting of four identical subunits of approximately 54 kDa. The presence of the homotetramer appears to be necessary for enzyme activity. In this study, recombinant rat liver mitochondrial ALDH (rmALDH) was inhibited in vitro with four different inhibitors, namely, disulfiram (MW, 296.5), prunetin (MW, 284.3), benomyl (MW, 290.3), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) (MW, 351.8). Subsequently, inhibited rmALDH was analyzed by a novel approach of on-line size exclusion chromatography-microelectrospray ionization-mass spectrometry (SEC-muESI-MS) to examine the noncovalent quaternary structural stability of the inhibited enzyme. Analysis of native rmALDH by SEC-muESI-MS revealed predominantly the homotetramer (Mr = approximately 217,457 Da, +/- 0.01%) with some in-source, skimmer-induced dissociation to afford monomer (Mr = approximately 54,360 Da, +/- 0.01%). Both disulfiram and prunetin inhibited rmALDH by >70% and >90%, respectively, but did not disrupt the quaternary structure of rmALDH. Furthermore, there was no detectable change within experimental error (+/- 0.01%) of the disulfiram or the prunetin homotetramers (Mr = approximately 217,448 Da and Mr = approximately 217,446 Da). This may possibly indicate that inhibition occurred via formation of intramolecular disulfide bond at the enzyme active site, or weak affinity noncovalent binding. In contrast, benomyl-inhibited rmALDH homotetramer (>90% inhibition) exhibited a Mr = approximately 217,650 Da (+/- 0.01%) corresponding to two butylcarbamoyl adducts on two of the four enzyme subunits. The skimmer-induced monomer afforded a mixture of unmodified rmALDH (Mr = approximately 54,365 Da, +/- 0.01%) and butylcarbamoylated enzyme (Mr = approximately 54,459 Da, +/- 0.01%). Finally, TPCK (>90% inhibition) modified all four subunits of rmALDH to give Mr = approximately 218,646 Da (+/- 0.01%). In all four cases while significant enzyme inhibition occurred, no destabilization of the quaternary complex was detected.  相似文献   

6.
Understanding the mechanism of acetaldehyde dehydrogenase 1 (ALDH1) folding is important because this enzyme is directly involved in several types of cancers and other diseases. We investigated the urea-mediated unfolding of ALDH1 by integrating kinetic inhibition studies with computational molecular dynamics (MD) simulations. Conformational changes in the enzyme structure were also analyzed using intrinsic and 1-anilinonaphthalene-8-sulfonate (ANS)-binding fluorescence measurements. Kinetic studies revealed that the direct binding of urea to ALDH1 induces inactivation of ALDH1 in a manner of mixed-type inhibition. Tertiary structural changes associated with regional hydrophobic exposure of the active site were observed. The urea binding regions on ALDH1 were predicted by docking simulations and were partly shared with active site residues of ALDH1 and with interface residues of the oligomerization domain for tetramer formation. The docking results suggest that urea prevents formation of the ALDH1 normal shape for the tetramer state as well as entrance of the substrate into the active site. Our study provides insight into the structural changes that accompany urea-mediated unfolding of ALDH1 and the catalytic role associated with conformational changes.  相似文献   

7.
COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r2 = 0.9924, q2 = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.  相似文献   

8.
Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.  相似文献   

9.
10.
In order to investigate the inhibiting mechanism and obtain some helpful information for de-signing functional inhibitors against Wee1, three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking studies have been performed on 45 pyrido[2,3-d] pyrim-idine derivatives acting as Wee1 inhibitors. Two optimal 3D-QSAR models with significant statistical quality and satisfactory predictive ability were established, including the CoMFA model (q2=0.707, R2=0.964) and CoMSIA model (q2=0.645, R2=0.972). The external val-idation indicated that both CoMFA and CoMSIA models were quite robust and had high predictive power with the predictive correlation coefficient values of 0.707 and 0.794, essen-tial parameter r2m values of 0.792 and 0.826, the leave-one-out r2m(LOO) values of 0.781 and 0.809, r2m(overall) values of 0.787 and 0.810, respectively. Moreover, the appropriate binding orientations and conformations of these compounds interacting with Wee1 were revealed by the docking studies. Based on the CoMFA and CoMSIA contour maps and docking analyses, several key structural requirements of these compounds responsible for inhibitory activity were identified as follows: simultaneously introducing high electropositive groups to the sub-stituents R1 and R5 may increase the activity, the substituent R2 should be smaller bulky and higher electronegative, moderate-size and strong electron-withdrawing groups for the substituent R3 is advantageous to the activity, but the substituent X should be medium-size and hydrophilic. These theoretical results help to understand the action mechanism and design novel potential Wee1 inhibitors.  相似文献   

11.
3'磷酸肌醇依赖的激酶1(3'-phosphoinositide-dependent kinase1,PDK1)是--个63kDa的丝氨酸/苏氨酸(Ser/Thr)蛋白酶,它是Akt1的上游活化激酶~([1,2]).PDK1可在磷酸化的Akt1的Thr308位点使Akt1的活性增加30倍以上.但这种活化以依赖PIP3或PIP2的方式完成,PDK1也就因此而得名~([3]).  相似文献   

12.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an important enzyme response for the metabolism or detoxification of toxic aldehydes, in particular acetaldehyde and 4-hydroxynonenal (4-HNE), which were important risk factors for acute alcoholism and stroke respectively. A special variant ALDH212 with reduced enzymatic activity was carried by a high percentage of East Asians, especially Han Chinese, and that could increase the risk of these diseases further. Therefore, ALDH2 activators had important potential clinical values. N-benzylbenzamide compounds represented by Alda-1 were the only ALDH2-specific activators that have been reported so far. In this study, three new classes of compounds were modified from Alda-1 to improve their water-solubility and then drug-like properties. The results showed that all compounds had increased water solubility and two classes of compounds exhibited good activation activity. Among them, compound I-6 showed the best activity.  相似文献   

13.
A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An evaluation of several candidate algorithms on the main dataset revealed that the support vector regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening, using this model, identified five predicted potent inhibitors from the ZINC database comprising more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four compounds where activity against LSD1 had not previously been suggested. Thus, we performed a machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information of the molecules.  相似文献   

14.
The polymerization of 1-methoxy-1-ethynylcyclohexane (MEC) was carried out by various transition metal catalysts. The catalysts MoCl5, MoCl4, and WCl6 gave a relatively low yield of polymer (≤ 16%). The catalytic activity of Mo-based chloride catalyst was greater than that of W-based chloride catalyst. However, catalyst tungsten carbene complex (I) gave a larger molar mass and higher yield in the presence of a Lewis acid such as AlCl3 than in the absence of a Lewis acid. The activity of the tungsten carbene complex was obviously affected by Lewis acidity. The catalyst PdCl2 was a very effective catalyst for the present polymerization and gave polymers in a high yield. The structure of the resulting poly(MEC) was identified by various instrumental methods as a conjugated polyene structure having an α-methoxycyclohexyl substituent. The poly(MEC)s were mostly light-brown powders and completely soluble in various organic solvents such as tetrahydrofuran (THF), chloroform (CHCl3), ethylacetate, n-butylacetate, dimethylformamide, benzene, xylene, dimethylacetamide, 1,4-dioxane, pyridine, and 1-methyl-2-pyrrolidinone. Thermogravimetric analysis showed that the polymer started to lose mass at 125°C and that maximum decomposition occurred at 418°C. The x-ray diffraction diagram shows that poly(MEC) has an amorphous structure. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Compounds containing an ethylenediamine structure in place of the piperazine ring of M55113 (1) and M55551 (2) were synthesized to investigate the effects of a piperazine moiety and evaluated for activity as factor Xa (FXa) inhibitors. Most such compounds, however, exhibited lower activity (1/10-1/100) than that of M55113 and M55551 as FXa inhibitors.  相似文献   

16.
17.
Three-dimension quantitative structure activity relationship (3D-QSAR) was one of the major statistical techniques to investigate the correlation of biological activity with structural properties of candidate molecules, and the accuracy of statistic greatly depended on molecular alignment methodology. Exhaustive conformational search and successful conformational superposition could extremely improve the predictive accuracy of QSAR modeling. In this work, we proposed a solution to optimize QSAR prediction by multiple-conformational alignment methods, with a set of 40 flexible PTP1B inhibitors as case study. Three different molecular alignment methods were used for the development of 3D-QSAR models listed as following: (1) docking-based alignment (DBA); (2) pharmacophore-based alignment (PBA) and (3) co-crystallized conformer-based alignment (CCBA). Among these three alignments, it was indicated that the CCBA was the best and the fastest strategy in 3D-QSAR development, with the square correlation coefficient (r2) and cross-validated squared correlation coefficient (q2) of comparative molecular field analysis (CoMFA) were 0.992 and 0.694; the r2 and q2 of comparative molecular similarity indices analysis (CoMSIA) were 0.972 and 0.603, respectively. The alignment methodologies used here not only generated a robust QSAR model with useful molecular field contour maps for designing novel PTP1B inhibitors, but also provided a solution for constructing accurate 3D-QSAR model for various disease targets. Undoubtedly, such attempt in QSAR analysis would greatly help us to understand essential structural features of inhibitors required by its target, and so as to discover more promising chemical derivatives.  相似文献   

18.
Disruption of the parvulin family peptidyl prolyl isomerase (PPIase) Pin1 gene delays reentry into the cell cycle when quiescent primary mouse embryo fibroblasts are stimulated with serum. Since Pin1 regulates cell cycle progression, a Pin1 inhibitor would be expected to block cell proliferation. To identify such inhibitors, we screened a chemical compound library for molecules that inhibited human Pin1 PPIase activity in vitro. We found a set of compounds that inhibited Pin1 PPIase activity in vitro with low microM IC50s and inhibited the growth of several cancer lines. Among the inhibitors, PiB, diethyl-1,3,6,8-tetrahydro-1,3,6,8-tetraoxobenzo[lmn] phenanthroline-2,7-diacetate ethyl 1,3,6,8-tetrahydro-1,3,6,8-tetraoxo-benzo[lmn] phenanthroline-(2H,7H)-diacetate, had the least nonspecific toxicity. These results suggest that Pin1 inhibitors could be used as a novel type of anticancer drug that acts by blocking cell cycle progression.  相似文献   

19.
The current study deals with chemometric modelling strategies (Naïve Bayes classification, hologram-based quantitative structure–activity relationship (HQSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)) to explore the important features of hydroxylamine derivatives for exerting potent human immunodeficiency virus-1 (HIV-1) protease inhibition. Depending on the statistically validated reliable and robust quantitative structure–activity relationship (QSAR) models, important and crucial structural features have been identified that may be responsible for enhancing the activity profile of these hydroxylamine compounds. Arylsulfonamide function along with methoxy or fluoro substitution is important for enhancing activity. Bulky steric substitution at the sulfonamide nitrogen disfavours activity whereas smaller hydrophobic substitution at the same position is found to be favourable. Apart from the crucial oxazolidinone moiety, pyrrolidine, cyclic urea and methyl ester functions are also responsible for increasing the HIV-1 protease inhibitory profile. Observations derived from these modelling studies may be utilized further in designing promising HIV-1 protease inhibitors of this class.  相似文献   

20.
Identification of hit compounds against specific target form the starting point for a drug discovery program. A consistent decline of new chemical entities (NCEs) in recent years prompted a challenge to explore newer approaches to discover potential hit compounds that in turn can be converted into leads, and ultimately drug with desired therapeutic efficacy. The vast amount of omics and activity data available in public databases offers an opportunity to identify novel targets and their potential inhibitors. State of the art in silico methods viz., clustering of compounds, virtual screening, molecular docking, MD simulations and MMPBSA calculations were employed in a pipeline to identify potential ‘hits’ against those targets as well whose structures, as of now, could only predict through threading approaches. In the present work, we have started from scratch, amino acid sequence of target and compounds retrieved from PubChem compound database, modeled it in such a way that led to the identification of possible inhibitors of Dam1 complex subunit Ask1 of Candida albicans. We also propose a ligand based binding site determination approach. We have identified potential inhibitors of Ask1 subunit of a Dam1 complex of C. albicans, which is required to prevent precocious spindle elongation in pre-mitotic phases. The proposed scheme may aid to find virtually potential inhibitors of other unique targets against candida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号