首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Numerous polymerizations of trimethylene carbonate (TMC) and neo-pentylene carbonate (NPC) were conducted in solution using methyl triflate as initiator. The polymerization mechanism was elucidated and rapid backbiting degradation along with the formation of ether groups was detected. When strong Lewis acids such as BF3, SnCl4 or SnBn4 were used as initiators, much higher molecular weights were obtained, but the resulting polycarbonates still contained ether groups. BuSnCl3 was found to be the most useful initiator yielding high molecular weight polycarbonates free of ether groups. However, in this case it is not clear, if a cationic mechanism or a coordination-insertion mechanism is involved.  相似文献   

2.
Numerous BuSnCl, Bu2SnCl, and Bu3SnCl-initiated polymerizations of cyclo(tri-methylene carbonate) (TMC) were conducted in bulk. In addition to the initiator, reaction time, temperature, and monomer/initiator (M/I) ratio were varied. Yields above 90% were obtained with all three initiators, but their reactivities decrease in the order BuSnCl3 > Bu2SnCl2 > Bu3SnCl. The maximum molecular weights decrease in the same order. With BuSnCl3 Mws up to 250,000 were obtained. These molecular weights were determined by GPC on the basis of the universal calibration method. In this connection Mark-Houwink equations for two solvents, tetrahydrofuran (THF) and CH2Cl2 were determined and compared with literature data. Furthermore, mechanistic aspects were studied. 1H- and 13C- NMR spectra revealed that BuSnCl3 forms complexes with the CO-group of TMC, whereas Bu2SnCl3 do not cause NMR spectroscopic effects. Kinetic studies in chloroform and nitrobenzene and a comparison with Bu3SnOMe suggest that at least BuSnCl3 initiates a cationic mechanism. However, in contrast to SnCl4 (or SnBr4), BuSnCl3 does not cause decarboxylation. Regardless of the initiator 1H-NMR spectroscopy revealed CH2OH and CH2CI endgroups in all cases. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
As a means for the chemical fixation of carbon dioxide and the synthesis of biodegradable polycarbonates, copolymerizations of carbon dioxide with various epoxides such as cyclohexene oxide (CHO), cyclopetene oxide, 4-vinyl-1-cyclohexene-1,2epoxide, phenyl glycidyl ether, allyl glycidyl ether, propylene oxide, butene oxide, hexene oxide, octene oxide, and 1-chloro-2,3-epoxypropane were investigated in the presence of a double metal cyanide catalyst (DMC). The DMC catalyst was prepared by reacting K3Co(CN)6 with ZnCl2, together with tertiary butyl alcohol and poly(tetramethylene ether glycol) as complexing reagents and was characterized by various spectroscopic methods. The DMC catalyst showed high activity (526.2 g-polymer/g-Zn atom) for CHO/CO2 (PCO2 = 140 psi) copolymerization at 80 °C, to yield biodegradable aliphatic polycarbonates of narrow polydispersity (Mw/Mn = 1.67) and moderate molecular weight (Mn = 8900). The DMC catalyst also showed high activities with different CO2 reactivities for other epoxides to yield various aliphatic polycarbonates with narrow polydispersity.  相似文献   

4.
Improved methods for the synthesis of linear and cyclic poly(diphenylacetylene)s by polymerization of the corresponding diphenylacetylenes using MoCl5- and WCl4-based catalytic systems have been developed. MoCl5 induces migratory insertion polymerization of diphenylacetylenes in the presence of arylation reagents such as Ph4Sn and ArSnnBu3 to produce cis-stereoregular linear poly(diphenylacetyelene)s with high molecular weights (number-average molar mass (Mn)=30,000–3,200,000) in good yields (up to 98 %). On the other hand, WCl4 induces ring expansion polymerization of diphenylacetylenes in the presence of Ph4Sn or reducing reagents to produce cis-stereoregular cyclic poly(diphenylacetylene)s with high molecular weights (Mn=20,000–250,000) in moderate to good yields (up to 90 %). Both catalytic systems are applicable to the polymerization of various diphenylacetylenes having polar functional groups such as esters that are not efficiently polymerized by conventional methods using WCl6-Ph4Sn and TaCl5-nBu4Sn systems.  相似文献   

5.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

6.
N-heterocyclic nitrogen Lewis acids are a recent addition to the field of organic chemistry. Based on nitrenium cations, these acids where previously shown to generate Lewis adducts when combined with the appropriate Lewis bases. Herein, a triazinium-based Lewis acid was combined with tBu3P to generate a frustrated Lewis pair (FLP) capable of cleaving, for the first time, Si−H bonds in silanes. Whereas low yields were initially encountered owing to insufficient Lewis acidity, a new nitrenium-based Lewis acid was synthesized, and its superior Lewis acidity was experimentally and computationally confirmed. A FLP based on this acid cleaved the Si−H bond in PhSiH3, generating the triazane product in a quantitative yield. This unprecedented N−H triazane was fully characterized by multinuclear NMR techniques and single-crystal X-ray crystallography. A new class of compounds, N-H triazanes display the potential capacity to participate in hydride transfer reactions.  相似文献   

7.
Functional aliphatic polycarbonates with pendant allyl groups were synthesised by copolymerization of carbon dioxide and allyl glycidyl ether (AGE) in the presence of a catalyst system based on ZnEt2 and pyrogallol at a molar ratio 2 : 1. The functionality of some polycarbonates was reduced by replacing a part of allyl ether with saturated glycidyl ether, i.e., butyl glycidyl ether (BGE) or isopropyl glycidyl ether (IGE). Polycarbonates obtained by the copolymerization of AGE and CO2 or by the terpolymerization of AGE, IGE and CO2 were oxidized with m‐chloroperbenzoic acid to their respective poly(epoxycarbonate)s. The influence of the AGE/ΣGE ratio in the polycarbonates, the polymer concentration in the reaction solution and the duration of the reaction on the conversion of allyl groups into glycidyl ones was examined. A tendency to gelation of the initial and oxidized polycarbonates during storage was observed. The initial polycarbonates and their oxidized forms were degraded in aqueous buffer of pH = 7.4 at 37°C. The course of hydrolytic degradation was monitored by the determination of mass loss.  相似文献   

8.
Hyperbranched aryl polycarbonates were prepared via the polymerizations of A2B and AB2 monomers, which involved the condensation of chloroformate (A) functionalities with tert‐butyldimethylsilyl‐protected phenols (B), facilitated by reactions with silver fluoride. The polymerization of the A2B monomer gave hyperbranched polycarbonates bearing fluoroformate chain ends, which were hydrolyzed to phenolic chain‐end moieties and further elaborated to tert‐butyldimethylsilyl ether groups. The polymerization of the AB2 monomer gave tert‐butyldimethylsilyl ether‐terminated hyperbranched polycarbonates. The polymerizations were conducted at 23–70 °C in 20% acetonitrile/tetrahydrofuran in the presence of a stoichiometric excess of silver fluoride for 20–40 h to afford hyperbranched polycarbonates with weight‐average molecular weights exceeding 100,000 Da and polydispersity indices of typically 2–3. The degrees of branching were determined by a reductive degradation procedure followed by high‐performance liquid chromatography. Alternatively, the degrees of branching were measurable by solution‐state 1H NMR analyses and agreed with the statistical 50% branching expected for the polymerization of A2B and AB2 monomers not experiencing constructive or destructive electronic effects on the reactivity of the multiple functional groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 823–835, 2002; DOI 10.1002/pola.10167  相似文献   

9.
The investigation of a silicon-mediated coupling reaction between hydroxyl and carbonylimidazolide functional groups in the preparation of carbonate linkages is described. Application of this reaction to the formation of aliphatic polycarbonates was accomplished by the polymerization of an AB monomer unit, which was composed of 1,4-cyclohexanediol, where one of the hydroxyl groups was protected as a dimethylphenylsilyl ether and the other carried the carbonylimidazolide functionality. Reaction of this monomer with cesium fluoride removed the silicon protecting group and the resulting alkoxy anion promoted polymerization. Poly(1,4-cyclohexanecarbonate)s with typical molecular weights of Mw = 20,000 and Mn = 7300 a.m.u. (from GPC based upon polystyrene standards) were prepared in ca. 65% yield. The polymer showed a glass transition temperature at 138°C by DSC. TGA gave 85% mass loss between 275 and 350°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1133–1137, 1997.  相似文献   

10.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

11.
Akio Saito 《Tetrahedron letters》2004,45(51):9439-9442
The bis-aluminated triflic amides such as TfN[Al(Me)Cl]2 and TfN[Al(iBu)2]2, which are derived from triflic amide (1 mol) and aluminum reagent (2 mol), can efficiently promote the Diels-Alder reaction of α,β-unsaturated lactone derivatives as dienophiles. Selection of the ligand on aluminum of these Lewis acids should be important depending on the combination of dienophile and 1,3-diene.  相似文献   

12.
A series of functional polycarbonates, poly((isopropylidene glyceryl glycidyl ether)‐co‐(glycidyl methyl ether) carbonate) (P((IGG‐co‐GME) C)) random copolymers with different fractions of 1,2‐isopropylidene glyceryl glycidyl ether (IGG) units, is synthesized. After acidic hydrolysis of the acetal protecting groups, a new type of functional polycarbonate prepared directly from CO2 and glycerol is obtained, namely poly((glyceryl glycerol)‐co‐(glycidyl methyl ether) carbonate) (P((GG‐co‐GME) C)). All hydroxyl functional samples exhibit monomodal molecular weight distributions with PDIs between 2.5 and 3.3 and M n between 12 000 and 25 000 g mol−1. Thermal properties reflect the amorphous structure of the polymers. The materials are stable in bulk and solution.  相似文献   

13.
An improved procedure for intramolecular cyclization of some Δ5-alkenols, using PhSeX (X = Cl, Br) has been developed. We found that cyclization can be facilitated in the presence of pyridine, Ag2O, and some Lewis acids as catalysts. Thus catalytic amount of additives (pyridine and Ag2O) influences higher yields but equimolar amount achieves almost quantitative yield under extremely mild experimental conditions. In the presence of Lewis acids (ZnCl2 and FeCl3) high yields of cyclic ether products are obtained with catalytic amounts. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:146–149, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10227  相似文献   

14.
Cationic polymerization of isobutyl vinyl ether (IBVE) with acetic acid (CH3COOH)/tin tetrahalide (SnX4: X = Cl, Br, I) initiating systems in toluene solvent at 0°C was investigated, and the reaction conditions for living polymerization of IBVE with the new initiating systems were established. Among these tin tetrahalides, SnBr4 was found to be the most suitable Lewis acid to obtain living poly(IBVE) with a narrow molecular weight distribution (MWD). The polymerization with the CH3COOH/SnBr4 system, however, was accompanied with the formation of a small amount of another polymer fraction of very broad MWD, probably due to the occurrence of an uncontrolled initiation by SnBr4 coupled with protonic impurity. Addition of 1,4-dioxane (1–1.25 vol %) or 2,6-di-tert-butylpyridine (0.1–0.6mM) to the polymerization mixture completely eliminated the uncontrolled polymer to give only the living polymer with very narrow MWD (M w/M n ≤ 1.1; M w, weight-average molecular weight; M n, number-average molecular weight). The M n of the polymers increased in direct proportion to monomer conversion, continued to increase upon sequential addition of a fresh monomer feed, and was in good agreement with the calculated values assuming that one CH3COOH molecule formed one polymer chain. Along with these results, kinetic study and direct 1H-NMR observation of the living polymerization indicated that CH3COOH and SnBr4 act as so-called “initiator” and “activator”, respectively, and the living polymerization proceeds via an activation of the acetate dormant species. The basic additives such as 1,4-dioxane and 2,6-di-tert-butylpyridine would serve mainly as a “suppressor” of the uncontrolled initiation by SnBr4. The polymers produced after quenching the living polymerization with methanol possessed the acetate dormant terminal and they induced living polymerization of IBVE in conjunction with SnBr4 in the presence of 1,4-dioxane. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3173–3185, 1998  相似文献   

15.
Air- and moisture-stable heterobimetallic tetrahedral clusters [Cp(CO)2MSiR]2 (M=Mo or W; R=SitBu3) were isolated from the reaction of N-heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes Cp(CO)2M=Si(SitBu3)NHC with a mild Lewis acid (BPh3). Alternatively, treatment of the NHC-stabilized silylidene complex Cp(CO)2W=Si(SitBu3)NHC with stronger Lewis acids such as AlCl3 or B(C6F5)3 resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M≡Si) complex to a tetrahedral cluster instead of a planar four-membered ring is due to steric bulk.  相似文献   

16.

The living polymerization of p‐tert‐butoxystyrene (tBuOS) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) 60/40 v/v solvent mixture at –80°C. The model initiator 1,1,‐ditolylethylene (DTE) capped 2‐chloro‐2,4,4‐trimethylpentane (TMPCl) was formed in situ in conjunction with TiCl4. Lowering the Lewis acidity by the addition of Ti(OIp)4 was necessary to induce a rapid and controlled polymerization of tBuOS. Well‐defined polymers with controlled molecular weights, however, were only obtained at a narrow [Ti(OIp)4]/[TiCl4]=0.83–0.86 ratio. Above this ratio, the polymerization of tBuOS was slow and became absent at [Ti(OIp)4]/[TiCl4]≥1.18. At ratios lower than 0.83, the polymerization was too rapid and the initiator efficiency was lower than 100%. The living polymerization of tBuOS was also studied with SnBr4 as Lewis acid. After capping TMPCl with DTE, Ti(OIp)4 was added to reach [Ti(OIp)4]/[TiCl4]=1.2, followed by the addition of tBuOS and SnBr4. SnBr4 induced a well‐controlled living polymerization approximately first order in [SnBr4], and the polymers exhibited close to theoretical M ns and low polydispersity indices (PDI<1.2). The success of the method was also demonstrated by the clean synthesis of poly(isobutylene‐b‐p‐tert‐butoxystyrene) PIB‐b‐PtBuOS diblock copolymers. PtBuOS‐b‐PIB‐b‐PtBuOS triblock copolymer thermoplastic elastomers were prepared by employing 5‐tert‐butyl‐1,3‐bis(1‐methoxy‐1‐methylethyl)benzene (DCE) as a difunctional initiator for the living polymerization of IB followed by capping with DTE and substitution of TiCl4 with SnBr4 for the polymerization of tBuOS. Deprotection of the triblock copolymer in the presence of catalytic amount of HCl yielded poly(p‐hydroxystyrene‐b‐isobutylene‐b‐p‐hydroxystyrene) (PHOS‐b‐PIB‐b‐PHOS). PHOS‐b‐PIB‐b‐PHOS with 39.3 wt% p‐hydroxystyrene content exhibited typical characteristic of a thermoplastic elastomers (TPEs) with tensile strength of 18 MPa and ultimate elongation of 300%.  相似文献   

17.
Air‐ and moisture‐stable heterobimetallic tetrahedral clusters [Cp(CO)2MSiR]2 (M=Mo or W; R=SitBu3) were isolated from the reaction of N‐heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes Cp(CO)2M=Si(SitBu3)NHC with a mild Lewis acid (BPh3). Alternatively, treatment of the NHC‐stabilized silylidene complex Cp(CO)2W=Si(SitBu3)NHC with stronger Lewis acids such as AlCl3 or B(C6F5)3 resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M≡Si) complex to a tetrahedral cluster instead of a planar four‐membered ring is due to steric bulk.  相似文献   

18.
The synthesis of coumarin derivatives via Pechmann reaction using anhydrous FeCl3 as Lewis acid catalyst in ionic liquid medium has been carried out. The best results were obtained (yields as high as 89%) with ionic liquids having bis(triflic)imide as a counteranion. The ionic liquid could easily be recovered and reused.  相似文献   

19.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

20.
Among five different oxidometallic species and two Lewis acids investigated, MoO2Cl2 shows the best catalytic and chemoselective activity for the deacylation of esters in methanol at ambient or elevated temperature. Both high efficiency and chemoselectivity were achieved for substrates bearing different ether or ester groups. Acylated mono and disaccharides can also be selectively deacetylated in good yields, leading to useful carbohydrate templates for further synthetic manipulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号