首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A covariant formalism for Moyal deformations of gauge theory and differential equations which determine Seiberg–Witten maps is presented. Replacing the ordinary product of functions by the noncommutative Moyal product, noncommutative versions of integrable models can be constructed. We explore how a Seiberg–Witten map acts in such a framework. As a specific example, we consider a noncommutative extension of the principal chiral model.  相似文献   

2.
肖靖  阮图南 《中国物理 C》2000,24(7):631-635
从高自旋态的Bargmann-Wigner方程出发,建立了整数自旋粒子的运动方程,通过求解方程得到了一套整数自旋粒子波函数,并建立了等效Largrange形式.  相似文献   

3.
A discussion of the 1950s and 1960s on the existence of an explicit covariant canonical formalism is renewed. A new point of view is introduced where Hamilton's principle, based on the existence of a Hamiltonian, is postulated independently from the Lagrange formalism. The Hamiltonian is determined by transformation properties and dimensional considerations. The variation of the action without constraints leads to an explicit covariant canonical formalism and correct equations of motion. The introduction of the charge as a fifth momentum gives rise to a reformulation of classical relativistic point mechanics as a five-dimensionalU(1) gauge theory with a theoretically invisible extra dimension. A generalization to other gauge groups is given. The inversion of the proper time is introduced as a new particle-antiparticle symmetry that allows one to show that in the five-dimensional classical theory all particles have positive energy.  相似文献   

4.
The canonical formalism of fields consistentwith the covariance principle of special relativity isgiven here. The covariant canonical transformations offields are affected by 4-generating functions. All dynamical equations of fields, e.g., theHamilton, Euler–Lagrange, and other fieldequations, are preserved under the covariant canonicaltransformations. The dynamical observables are alsoinvariant under these transformations. The covariantcanonical transformations are therefore fundamentalsymmetry operations on fields, such that the physicaloutcomes of each field theory must be invariant under these transformations. We give here also thecovariant canonical equations of fields. These equationsare the covariant versions of the Hamilton equations.They are defined by a density functional that is scalar under both the Lorentz and thecovariant canonical transformations of fields.  相似文献   

5.
We present a manifestly covariant quantization procedure based on the de Donder–Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein–Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a “first” or pre-quantization within the framework of conventional QFT. PACS 04.62.+v; 11.10.Ef; 12.10.Kt  相似文献   

6.
A formalism is presented for calculating exactsolutions of covariant inhomogeneous scalar and tensorwave equations whose source terms are arbitrary ordermultipoles on a curved background spacetime. The developed formalism is based on the theory ofthe higher-order fundamental solutions for wave equationwhich are the distributions that satisfy theinhomogeneous wave equation with the corresponding order covariant derivatives of the Dirac deltafunction on the right-hand side. Like the classicalGreen's function for a scalar wave equation, thehigher-order fundamental solutions contain a direct termwhich has support on the light cone as well as a tailterm which has support inside the light cone. Knowinghow to compute the fundamental solutions of arbitraryorder, one can find exact multipole solutions of wave equations on curved spacetimes. Wepresent complete recurrent algorithms for calculatingthe arbitrary-order fundamental solutions and the exactmultipole solutions in a form convenient for practical computations. As an example we apply thealgorithm to a massless scalar wave field on aparticular Robertson-Walker spacetime.  相似文献   

7.
8.
9.
It is shown that both covariant harmonic oscillator formalism and quantum field theory are based on common physical principles which include Poincaré covariance, Heisenberg's space-momentum uncertainty relation, and Dirac's “C-number” time-energy uncertainty relation. It is shown in particular that the oscillator wave functions are derivable from the physical principles which are used in the derivation of the Klein-Nishina formula.  相似文献   

10.
The covariant canonical method of quantization based on the De Donder–Weyl covariant canonical formalism is used to formulate a world-sheet covariant quantization of bosonic strings. To provide the consistency with the standard non-covariant canonical quantization, it is necessary to adopt a Bohmian deterministic hidden-variable equation of motion. In this way, string theory suggests a solution to the problem of measurement in quantum mechanics. PACS 11.25.-w; 04.60.Ds; 03.65.Ta  相似文献   

11.
The Hamiltonian formalism for theN=1,d=4 superconformal system is given. The first-order formalism is found by starting from the canonical covariant one. As the conformal supergravity is a higher-derivative theory, to analyze the second-order Hamiltonian formalism the Ostrogradski transformation is introduced to define canonical momenta.  相似文献   

12.
The canonical covariant formalism (CCF) of the topological five-dimensional Chern–Simons gravity is constructed. Because this gravity model naturally contains a Gauss–Bonnet term, the extended CCF valid for higher curvature gravity must be used. In this framework, the primary constraint and the total Hamiltonian are found. By using the equations of the CCF, it is shown that the bosonic five-form which defines the total Hamiltonian is a first-class dynamical quantity strongly conserved. In this context the equations of motion are also analyzed. To determine the effective interactions of the model, the toroidal dimensional reduction of the five-dimensional Chern–Simons gravity is carried out. Finally the first-order CCF and the usual canonical vierbein formalism (CVF) are related and the Hamiltonian as generator of time evolution is constructed in terms of the first-class constraints of the coupled system.  相似文献   

13.
The formalism of partial differential equations with respect to coupling constants is used to develop a covariant perturbation theory for the interpolating fields and theS matrix when the coupling terms in the Larangian density involve arbitrary (first and higher) derivatives. Through the notion of pure noncovariant contractions, the free-fieldT and the (covariant)T * products can be related to each other, allowing us to avoid the Hamiltonian density altogether when dealing with theS matrix. The important ingredients in our approach are (1) the adiabatic switching on and off of the interactions in the infinite past and future, respectively, and (2) the vanishing of four-dimensional delta functions and their derivatives at zero space-time points. The latter ingredient is a prerequisite that our formalism and the canonical formalism be consistent with each other, and on the other hand, it is supported by the dimensional regularization. Corresponding to any Lagrangian, the generalized interaction Hamiltonian density is defined from the covariantS matrix with the help of the pure noncovariant contractions. This interaction Hamiltonian density reduces to the usual one when the Lagrangian density depends on just first derivatives and when the usual canonical formalism can be applied.  相似文献   

14.
We apply the Galilean covariant formulation of quantum dynamics to derive the phase-space representation of the Pauli–Schrödinger equation for the density matrix of spin-1/2 particles in the presence of an electromagnetic field. The Liouville operator for the particle with spin follows from using the Wigner–Moyal transformation and a suitable Clifford algebra constructed on the phase space of a (4 + 1)-dimensional space–time with Galilean geometry. Connections with the algebraic formalism of thermofield dynamics are also investigated.  相似文献   

15.
We look for a generalization of the mechanics of Hamilton and Nambu. We have found the equations of motion of a classical physical system ofS basic dynamic variables characterized byS – 1 constants of motion and by a function of the dynamical variables and the time whose value also remains constant during the evolution of the system. The numberS may be even or odd. We find that any locally invertible transformations are canonical transformations. We show that the equations of motion obtained can be put in a form similar to Nambu's equations by means of a time transformation. We study the relationship of the present formalism to Hamiltonian mechanics and consider an extension of the formalism to field theory.  相似文献   

16.
A self-consistent relativistic formalism is presented which postulates that mass is the eigenvalue of a fifth momentum operator component. Lorentz covariance is generalized so that a systematic program for covariant wave equations can be formed. The fifth dimension is identified with cosmic time, resulting in a bias toward matter over antimatter for the universe. A distinction between μ ande also seems possible through the space-time extension.  相似文献   

17.
Using a strongly covariant formalism given by Carter for the deformations dynamics of p-branes in a curved background and a covariant and gauge invariant geometric structure constructed on the corresponding Witten's phase space, we identify the canonical variables for Dirac–Nambu–Goto (DNG) and Gauss–Bonnet (GB) system in string theory. Future extensions of the present results are outlined.  相似文献   

18.
19.
Scroll waves are an important example of self-organisation in excitable media. In cardiac tissue, scroll waves of electrical activity underlie lethal ventricular arrhythmias and fibrillation. They rotate around a topological line defect which has been termed the filament. Numerical investigation has shown that anisotropy can substantially affect the dynamics of scroll waves. It has recently been hypothesised that stationary scroll wave filaments in cardiac tissue describe geodesics in a space whose metric is the inverse diffusion tensor. Several computational studies have validated this hypothesis, but until now no quantitative theory has been provided to study the effects of anisotropy on scroll wave filaments. Here, we review in detail the recently developed covariant formalism for scroll wave dynamics in general anisotropy and derive the equations of motion of filaments. These equations are fully covariant under general spatial coordinate transformations and describe the motion of filaments in a curved space whose metric tensor is the inverse diffusion tensor. Our dynamic equations are valid for thin filaments and for general anisotropy and we show that stationary filaments obey the geodesic equation. We extend previous work by allowing spatial variations in the determinant of the diffusion tensor and the reaction parameters, leading to drift of the filament.  相似文献   

20.
The canonical formalism for supergravity is constructed. The algebra of canonical constraints is found. The correct expression for the S matrix is obtained. Usual “covariant methods” lead to an incorrect S matrix in supergravity, since a new four-particle interaction of ghostfields survives in the Lagrangian expression of the S matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号