首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pressure effect on the melting behavior of poly(butylene terephthalate) (PBT) and poly(hexamethylene terephthalate) (PHT) was studied by high‐pressure DTA (HP‐DTA) up to 320 and 530 MPa, respectively. Cooling rate dependence on the DSC melting curves of the samples cooled from the melt was shown at atmospheric pressure. Stable and metastable samples were prepared by cooling from the melt at low and normal cooling rates, respectively. DTA melting curves for the stable samples showed a single peak, and the peak profile did not change up to high pressure. Phase diagrams for PBT and PHT were newly determined. Fitting curves of melting temperature (Tm) versus pressure expressed by quadratic equation were obtained. Pressure coefficients of Tm at atmospheric pressure, dTm/dp, of PBT and PHT were 37 and 33 K/100 MPa, respectively. HP‐DTA curves of the metastable PBT showed double melting peaks up to about 70 MPa. In contrast, PHT showed them over the whole pressure region. HP‐DTA of stable poly(ethylene terephthalate) (PET) was also carried out up to 200 MPa, and the phase diagram for PET was determined. dTm/dp for PET was 49 K/100 MPa. dTm/dp increased linearly with reciprocal number of ethylene unit. The decrease of dTm/dp for poly(alkylene terephthalate) with increasing a segmental fraction of an alkyl group in a whole molecule is explained by the increase of entropy of fusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 262–272, 2000  相似文献   

2.
The melting behavior of poly(butylene terephthalate) (PBT) has been investigated, and a simulation has been performed to determine whether the multiple melting endotherms observed during the thermal analysis of PBT can be explained by the simultaneous melting and recrystallization of an initial distribution of crystal melting temperatures that contains only one maximum and two inflection points. Specimens that were cooled at constant rates from the melt showed between one and three melting endotherms upon heating in a differential scanning calorimeter (DSC). The position and breadth of the crystallization exotherms upon cooling from the melt and small-angle x-ray scattering showed that as the cooling rate is increased, the distribution of melting temperatures broadens and shifts to lower temperatures. By combining temperature-dependent recrystallization with an initial distribution of melting temperatures, simulated DSC curves were produced that agreed well with experimental DSC curves. In instances of triple peaked curves, the high temperature peak was due to crystals formed during the scanning process, and the middle and low temperature peaks were due to crystals originally present in the material. Satisfactory agreement between the experimental and simulated curves was found without considering additional crystallization from the amorphous regions during the scanning process.  相似文献   

3.
The synthesis, morphology, and mechanical properties of sulfonated poly(butylene terephthalate) (PBT) and its unsulfonated analogs were studied. The morphology of these copolymers crystallized from the melt were examined by a combination of wide-angle x-ray scattering (WAXS), polarized light microscopy, and small-angle light scattering (SALS). Stress-strain measurements are correlated with the morphological results. Spherulitic morphology, with a maltese cross at 45°C with respect to the crossed polars, is formed at low sulfonate levels (≤ 5.0 mol %). At a higher ion content, the maltese cross rotates 45° to form a cross pattern. At still higher sulfonate contents, typically 13 mol %, the light scattering pattern disappears completely. Microscopic and WAXS examination of these functionalized PBT copolymers confirms that the crystallinity level decreases with increasing ion content and is eliminated completely at the higher sulfonation level. The spherulite radius, however, remains invariant until the highest functionalization level. On the contrary, the morphology and properties of the unsulfonated isophthalate copolymer analogs remain relatively constant over the entire composition range examined. In several compositions clearly inferior properties are noted compared with the ion-containing copolymers.  相似文献   

4.
The occurrence of ester-interchange reactions during PET/PBT blend processing has been confirmed by 13C-NMR measurements. The limitations of the method for precise quantification of the extent of reaction between high molecular weight polyester blends have also been pointed out. Titanium alkoxide has been confirmed as an efficient catalyst, and, within experimental precision, the stabilizing effect of triphenyl phosphite addition has been demonstrated. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

6.
Blends of poly(butylene terephthalate) (PBT) and polyestercarbonate (PEC), copolyesters consisting of polycarbonate (PC) and polyarylate (PAr), have been studied by thermal analysis to determine miscibility. The PBT blends with PAr and PEC containing 30 wt % of carbonate unit or less appeared to be miscible, and the tendency for stable single‐phase was observed to decrease as the content of carbonate unit in PEC copolymer increased. As determined with the crystalline phase behavior, the miscibility of PEC with PBT appeared to have a maximum around 10 ∼ 30 wt % of carbonate content in PEC copolymer, and this result was attributed to the internal repulsion effect between ester and carbonate repeating units in PEC copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 803–811, 2000  相似文献   

7.
The pyrolysis and the flame retardancy of poly(butylene terephthalate) (PBT) containing aluminum diethylphosphinate (AlPi) and nanometric Fe2O3 were investigated using thermal analysis, evolved gas analysis (Thermogravimetry‐FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analysis of residue (FTIR). AlPi mainly acts as a flame inhibitor in the gas phase, through the release of diethylphosphinic acid. A small amount of Fe2O3 in PBT promotes the formation of a carbonaceous char in the condensed phase. The combination of 5 and 8 wt% AlPi, respectively, with 2 wt% metal oxides achieves V‐0 classification in the UL 94 test thanks to complementary action mechanisms. Using PBT/metal oxide nanocomposites shows a significant increase in the flame retardancy efficiency of AlPi in PBT and thus opens the route to surprisingly sufficient additive contents as low as 7 wt%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Annealing of poly(butylene terephthalate) (PBT) was studied by differential scanning calorimetry (DSC) and small angle X‐ray scattering (SAXS) measurement. A PBT sample was annealed at a recrystallization temperature where recrystallization occurs with a maximum rate in the heating process of the sample. In the subsequent annealing steps, the annealed sample was annealed repeatedly at the recrystallization temperatures, and the stepwise annealing sample was obtained. Peak melting temperature (Tm) and sharpness of DSC peak of the stepwise annealing sample increased with the annealing step. A high melting‐temperature sample was obtained in a short time, and Tm increased up to 238.5°C which is higher than all the Tm values that appear in the literature. The long period calculated from SAXS curves of the stepwise annealing sample increased with the annealing step. The increase of crystallite size and perfection of the crystal in the stepwise annealing process is suggested. Annealing experiment indicated that T°m should be higher than about 235°C. Tm increased linearly with the annealing temperature of the final step in the stepwise annealing (Ta). The equilibrium melting temperature (T°m) for PBT was estimated to be 247°C by the application of a Hoffman–Weeks plot to the relation between Tm vs. Ta. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2420–2429, 1999  相似文献   

9.
Different crystallization kinetic models (Avrami and Tobin) have been applied to study the crystallization kinetics of virgin poly(butylene terephthalate) (PBT) and filled PBT systems under isothermal experimental conditions. The experimental data have been analyzed with a nonlinear, multivariable regression program. The kinetic parameters for the isothermal crystallization have been determined. The analysis results indicate that both models satisfactorily represent the isothermal crystallization kinetics. PBT crystallizes most slowly. The presence of nanoclays or nanofibers, added as fillers, enhances the crystallization rate of PBT composites. An analysis of the kinetic data with the Avrami and Tobin models has shown little change in the crystallization exponent compared with that of virgin PBT. The crystallization rate constant decreases with a rise in the temperature for the two models. This trend has been observed for similar polyester systems reported in the literature. The dispersion of the clay layers in the PBT nanocomposites has been characterized with wide‐angle X‐ray diffraction and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1344–1353, 2007  相似文献   

10.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

11.
A polyetheramine (PEA) was added to poly(butylene terephthalate) (PBT) to improve its melt-flowability. Fourier transform infrared (FTIR) and solution proton nuclear magnetic resonance spectroscopy (1H-NMR) were employed to check the change in chemical structure after compounding, while differential scanning calorimetry (DSC), wide angel X-ray diffraction (WAXD), capillary rheometer and a universal testing machine were used to investigate the thermal properties, crystal structure, rheological behavior and mechanical properties of PBT/PEA blends. The results revealed that a loading of 1.0wt% PEA in PBT drastically improved its melt-flowability without the loss of thermal properties and tensile strength. As comparisons, blends of PBT with polyols such as pentaerythritol and di(trimethylolpropane) were also prepared and the properties were evaluated. It was found that the melt-flowability improvement from these polyols was much lower than that from PEA.  相似文献   

12.
The α and β forms of poly(butylene terephthalate) transform reversibly by elongation and relaxation. The conformation change occurs in the tetramethylene glycol part, from GGTGG conformation to TSTS?T conformation. In this study, by using a doubly oriented sample, we measured the positions, intensities, and half‐widths of the (100) and (010) reflections of the α and β forms of poly(butylene terephthalate) with a position‐sensitive proportional counter system. During the transformation, the molecules translate only slightly. These slight molecular translations, or distortions, accumulate, and the crystallite of the α form breaks into the small crystallites of the β form as the α–β transformation proceeds, and the crystallite of the α form grows with the relaxation of the distortion accumulated in the crystal and amorphous regions and on the crystallite surface as the β–α transformation proceeds. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 765–771, 2002  相似文献   

13.
In this paper, cetyl pyridium chloride (CPC) was employed to modify the montmorillonite. TGA analysis shows that the organic modified clay has higher thermal stability than hexadecyl trimethyl ammonium chloride modified montmorillonite and is suitable to be used for preparing poly(butylene terephthalate) (PBT)/clay nanocomposites at the high temperature. And then PBT/clay nanocomposites were prepared by direct melt intercalation. The results of XRD, TEM and HREM experiments show the formation of exfoliated-intercalated structure. The thermal stability of the nanocomposites does not evidently decrease, but the char residue at 600 °C remarkably increase compared with pure PBT. DSC results indicate that clay improves the melting temperature, the crystallization rate and crystallinity of the PBT molecules in the nanocomposites.  相似文献   

14.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The thermoreversible gelation of solutions of poly(butylene terephthalate) (PBT) and a liquid diglycidyl ether of bisphenol-A epoxy has been investigated. The morphology of the gels and the conditions under which they form have been characterized by optical microscopy, thermal analysis, and x-ray scattering. Gels were found to form under two different conditions and with different morphologies. Gels formed after a considerable delay when homogenous PBT-epoxy solutions were cooled to slightly below the dissolution temperature of crystalline PBT. These gels contained large, irregular PBT spherulites and smaller birefringent interspherulitic matter. The melting of these gels and the onset of macroscopic flow coincided with the melting of the interspherulitic matter, and occurred before the melting of the large spherulites. Thermoreversible gels formed very quickly when PBT-epoxy solutions were self-nucleated by heating a dispersion of crystalline PBT in epoxy slightly and briefly above the dissolution temperature and then cooling. These gels displayed only a weak background birefringence and were molten when the weak birefringence disappeared. In both cases, gelation occurred by the formation of a three-dimensional PBT network in the epoxy liquid, and the nodes of the network were crystalline PBT particles. $ 1994 John Wiley & Sons, Inc.  相似文献   

16.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

17.
The melting behavior and the crystallization kinetics of poly(butylene terephthalate/thiodiethylene terephthalate) copolymers were investigated by DSC technique. The multiple endotherms were influenced both by T c and composition. By applying the Hoffman—Weeks' method, T m 0 the of the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami's treatment. Values of the exponent n close to 3 were obtained, independently of T c and composition. The introduction of thiodiethylene terephthalate units decreased the PBT crystallization rate. H m was correlated to c p for samples with different degree of crystallinity and the results were interpreted on the basis of the existence of an interphase.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
The melting behavior of poly(butylene terephthalate) crystallized isothermally for various times was examined using differential scanning calorimetry. After short crystallization times, the DSC analysis gave two melting peaks, but after longer times, the analysis gave three peaks. The latter triplet of DSC peaks can be denoted as low, middle, and high, starting with the lowest temperature endotherm. The DSC peaks were simulated using a measured recrystallization rate and behavior for PBT and an assumed initial melting point distribution. The low and middle peaks represent the original melting peaks arising from isothermal crystallization. The high melting peak arises from recrystallization during the DSC heating scan. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1757–1767, 1998  相似文献   

19.
We clarify the reaction mechanisms and kinetics in melt‐reacted blends consisting of functional polysiloxanes and poly(butylene terephthalate) (PBT) with a model compound study. As models for polysiloxanes, we have selected two monodisperse ω‐functionalized siloxane oligomers with Si? H and Si? vinyl moieties. To mimic PBT, we have chosen low molecular weight compounds representative for in‐chain and end‐functional groups of the polymer; ester, carboxylic acid, alcohol, and vinyl. Uncatalyzed and platinum‐catalyzed reactions have been performed in sealed vials. Reaction products have been characterized by gradient polymer elution chromatography, Fourier transform infrared spectroscopy, and size exclusion chromatography. PBT functional groups reactive toward functional siloxane oligomers at high temperatures in the presence and absence of a catalyst have been identified, and an estimate of relative reaction kinetics has been provided. We suggest reaction mechanisms compatible with our results and with literature data. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1952–1961, 2002  相似文献   

20.
Segmented copolyesters, namely, poly(butylene terephthalate)–poly(ethylene terephthalate‐co‐isophthalate‐co‐sebacate) (PBT‐PETIS), were synthesized with the melting transesterification processing in vacuo condition involving bulk polyester produced on a large scale (PBT) and ternary amorphous random copolyester (PETIS). Investigations on the morphology of segmented copolyesters were undertaken. The two‐phase morphology model was confirmed by transmission electron microscopy and dynamic mechanical thermal analysis. One of the phases was composed of crystallizable PBT, and the other was a homogeneous mixture of PETIS and noncrystallizable PBT. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2257–2263, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号