首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The heat capacity, Cp, of poly(oxyethylene), POE, with a molar mass of 900,000 Da, was analyzed by temperature-modulated differential scanning calorimetry, TMDSC. The high molar mass POE crystals are in a folded-chain macroconformation and show some locally reversible melting, starting already at about 250 K. At 335 K the thermodynamic heat capacity reaches the level of the melt. The end of melting of a high-crystallinity sample was analyzed quasi-isothermally with varying modulation amplitudes from 0.2 to 3.0 K to study the reversible crystallinity. A new internal calibration method was developed which allows to quantitatively assess small fractions of reversibly melting crystals in the presence of the reversible heat capacity and large amounts of irreversible melting. The specific reversibility decreases to small values in the vicinity of the end of melting, but does not seem to go to zero. The reversible melting is close to symmetric with a small fraction crystallizing slower than melting, i.e., under the chosen condition some of the melting and crystallization remains reversing. The collected data behave as one expects for a crystallization governed by molecular nucleation and not as one would expect from the formation of an intermediate mesophase on crystallization. The method developed allows a study of the active surface of melting and crystallization of flexible macromolecules.  相似文献   

3.
The significance of the analytical ultracentrifuge (AUC) for industrial research has not decreased during the last decades and seems to be growing. The AUC is used for the development and for controlling the production of emulsion polymers (via measurement of particle size distributions) as well as for the determination of molar masses and molar mass distributions of polymers which cause difficulties with conventional methods like light scattering or size exclusion chromatography. In order to speed up the principally very time-consuming AUC measurements, our machines were equipped with multiplexers for multiple place rotors and with video systems for digital recording and processing of the schlieren images. Furthermore for measurements with the UV scanner the optical system had to be considerably improved in order to assess wavelengths down to 210 nm because of the unfavourable UV absorption of the poly(methacrylates). The experimental methods and the data evaluation will be explained and discussed using a very high-molecular-weight poly(methylmethacrylate) and a cationic polyelectrolyte, viz. poly(trimethylammoniumethylmethacrylate hydrochloride), as examples.  相似文献   

4.
These studies demonstrate a new approach of producing multifunctionalized coatings on poly(tetrafluoroethylene) (PTFE) surfaces by covalent attachments of multilayers (CAM) of heparin (HP) and poly(ethylene glycol) (PEG). This process can be universally applied to other covalently bonded species and was facilitated by microwave plasma reactions in the presence of maleic anhydride which, upon ring-opening and hydrolysis, provided covalent attachment of COOH groups to PTFE. These studies showed that alternating layers of PEG and HP can be covalently attached to COOH-PTFE surfaces, and the volume concentration and surface density of PEG and HP on the PTFE surface achieved by the CAM were 7.02-6.04 × 10(-3) g/cm(3) (2.1-1.8 × 10(-7) g/cm(2)) and 9.3-8.7 × 10(-3) g/cm(3) (2.8-2.6 × 10(-7) g/cm(2)), respectively. The CAM process may serve numerous applications when the covalent modification of inert polymeric substrates is required and particularly where the presence of bioactive species for biocompatibility enhancement is desirable.  相似文献   

5.
Adsorption of well-defined fluorinated polymers onto clinically relevant poly(tetrafluoroethylene) (PTFE) substrates offers an attractive method for modifying the surface properties of chemically inert PTFE. Reversible addition-fragmentation chain transfer (RAFT) was successfully used for synthesis of the polymers in this study: the homopolymers poly(2,3,4,5,6-pentafluorostyrene) (PFS), poly(2,2,3,3-tetrafluoropropyl acrylate) (PTFPA), and poly(2,2,3,3-tetrafluoropropyl methacrylate) (PTFPMA) as well as their block copolymers with tert-butyl acrylate ( (t)BA). Water-soluble blocks were synthesized through the hydrolysis of the t-butyl side groups of P( (t)BA) to the corresponding carboxylic acid. Adsorption of selected polymers onto PTFE from a series of solvents (methyl ethyl ketone (MEK), dimethylformamide (DMF), fluorobenzene (FB), dichloromethane (DCM)) was investigated using X-ray photoelectron spectroscopy (XPS) and sessile water drop measurements. The three homopolymers studied all adsorbed irreversibly (i.e., were not removed by washing) from organic solvents at ambient temperature. PFS displayed the highest adsorption, and was attributed to strong hydrophobic interactions. From angle-resolved XPS it was concluded that PFS became impregnated into the PTFE substrate down to depths of 100 A when using FB as a solvent. The carboxylic acid-containing block copolymers adsorbed more effectively from DMF (a good solvent for the poly(acrylic acid) block) compared to MEK. The resulting modified PTFE substrates displayed high stability with respect to desorption in aqueous solution, yet conformational changes of the adsorbed polymer resulted in a switchable hydrophobic-hydrophilic surface (in air or water, respectively). These results highlight the success of a facile and simple approach to irreversibly adsorb functional polymers to a nonfunctional fluorinated surface.  相似文献   

6.
Direct spectroscopic evidence for radiation-induced crosslinking of poly(tetrafluoroethylene) (PTFE) is presented for all x-ray and electron dose levels above which it is possible to distinguish between deliberately introduced radiation damage and the x-ray damage inherent in obtaining an x-ray photoelectron spectrum (XPS). The C (1s) spectrum obtained after irradiation with 2 keV electrons for all doses greater than 1 μA-min/cm2 consists of a four-peak spectrum identical to that previously obtained for plasma-polymerized tetrafluoroethylene and assigned to carbon atoms with variable numbers of bound F atoms (CF3, CF2, CF1, and CF0). X-ray irradiated PTFE can be fitted with the same four-peak spectrum. At or below an electron dose level of 1 μA-min/cm2, the radiation damage is comparable to that produced by the x-ray dose necessary to obtain an XPS spectrum. The CF1 and CF0 components increase with increasing electron dose, and at high electron doses dominate the spectrum. With increasing dose the CF3 component approaches a constant value while both the CF2 component and the total F : C ratio decreases. These four components are those expected to result from radiation-induced crosslinking reactions of the polymer and are consistent with previous suggestions that crosslinking is the basis of radiation patterned adhesion to PTFE. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Sum-frequency vibrational spectroscopy was used to obtain the first surface vibrational spectra of shear-deposited highly oriented poly(tetrafluoroethylene) (PTFE, Teflon) thin films. The surface PTFE chains appeared to lie along the shearing direction. Vibrational modes observed at 1142 and 1204 cm-1 were found to have the E1 symmetry, in support of some earlier analysis in the long-lasting controversy over the assignment of these modes.  相似文献   

8.
Preirradiation grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene) (PTFE) and poly(tetrafluoroethylene-hexafluoropropylene) (FEP) films was investigated. The influence of grafting parameters such as preirradiation dose, monomer concentration, and grafting temperature on the rate and grafting yield was studied. Different solvents were used for diluting the monomer and it was found that the aqueous monomer solution at a concentration of 80 wt% was suitable for this grafting system. However, the graft polymerization of NVP in benzene terminated within a short time without significant grafting yield. The dependence of the grafting rate on preirradiation dose and monomer concentration was 1.2 and 1.07 order, respectively, for grafting onto PTFE films and 1.1 and 1.2 order, respectively, for grafting onto FEP films. Arrhenius plots for grafting onto PTFE films showed a breaking point at ca. 35°C and the overall activation energies were calculated as 23.6 and 9.0 Kcal/mol below and above 35°C, respectively. For grafting onto FEP films, however, no break was observed in the Arrhenius plots; the overall activation energy was 11.9 Kcal/mol. The swelling behavior and electric resistance of the grafted materials were investigated.  相似文献   

9.
Effect of hydrolysis time on molar mass, glass transition temperature, crystallinity, and resistance to thermooxidation at elevated temperatures was analyzed for Estanes 54600, 54610, and 54650. Kinetics of the hydrolysis can be plausibly described in terms of the first-order reaction with an average induction period of about 7 days. Reduction of molar mass induced by hydrolysis brings about an appreciable decrease in glass transition temperature, fraction of crystalline domains of soft segments, and thermooxidative stability. The latter effect is manifested by shortening of the lifetimes (related to 5% mass loss) the temperature dependence of which obeys the Arrhenius plot. The observed differences in hydrolysis resistance of Estanes can be related to their chemical composition.  相似文献   

10.
In the present article, we investigate by differential scanning calorimetry (DSC) the thermal behavior (melting, crystallization, and crystal–crystal transitions) far from equilibrium of blends constituted of two crystalline polymers. In particular, the following blends are examined: PTFE–PFMVE, PTFE–FEP, and FEP–PFMVE where PTFE is poly(tetrafluoroethylene), PFMVE is poly(tetrafluoroethylene‐co‐perfluoromethylvinylether), and FEP is poly(tetrafluoroethylene‐co‐hexafluoropropylene). The two last ones are random tetrafluoroethylene copolymers with small amounts of comonomer. Our results indicate that, under the experimental investigated conditions, the blends containing PTFE do not give cocrystallization on cooling from the melt, although under very rapid crystallization conditions, quenching, the presence of the copolymer would seem to slightly influence PTFE crystallization (lower peak temperatures are observed for the crystalline transitions and the melting with respect to those of the neat homopolymer). The behavior of the FEP–PFMVE blend is completely different; in fact, our results indicate the occurrence of cocrystallization, then miscibility in the crystalline phase, for almost all compositions and all investigated experimental conditions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 679–689, 1999  相似文献   

11.
Tetrafluoroethylene was prepared by a thermal depolymerization of poly(tetrafluoroethylene) waste. The gaseous mixture containing 95–97 % tetrafluoroethylene has been used without further purification in a direct reaction with iodine to synthesize some α,ω-diiodoperfluoroalkanes at temperature 285±5°C for 8 h. Stoichiometric one to one ratio of the reagents has been found to produce higher diiodoperfluoroalkanes yield per unit reaction volume than synthesis in the presence of an excess of tetrafluoroethylene. This approach provides a rapid one-pot procedure to these valuable reagents without any dangerous step.  相似文献   

12.
In this study CO2, H2/H2O and H2O low pressure plasma treatment of poly(tetrafluoroethylene) (PTFE) foils and of thin plasma deposited fluorocarbon polymer (PDFP) films with a structure close to PTFE was investigated. The properties of the plasma were analyzed by mass spectroscopy (MS) and optical emission spectroscopy (OES). The modified fluorocarbon surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry, electrokinetic measurements and dynamic contact angle measurements in order to find optimized treatment conditions. The results of the surface modification were compared with respect to the efficiency of the plasma treatment and the stability of the modification effect at different ambient conditions. It was shown that the H2O plasma treatment is the most effective process for the intended modification. The hydrophobic PTFE surface was converted into a more hydrophilic one. The introduced radicals after the H2O plasma treatment can be utilized subsequently for post plasma reactions such as grafting processes.  相似文献   

13.
Low molar mass (∼ 4000) di- and triblock copolymers of styrene and tert-butyl acrylate were synthesized by atom transfer radical polymerization (ATRP) in bulk and solution conditions. A CuBr/N, N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalyst system in conjunction with an alkyl-halide initiator were used to control the synthesis of the polystyrene macroinitiator and the subsequent copolymerization with tert-butyl acrylate. Hydrolysis of the tert-butyl acrylate blocks to acrylic acid blocks in the presence of trifluoroacetic acid resulted in the formation of an amphiphilic block copolymer. Size exclusion chromatography (SEC) and matrix assisted laser desorption ionization - time of flight - mass spectrometry (MALDI-TOF-MS) were used to determine the molar mass and molar mass distribution of the polystyrene macroinitiators and the block copolymers. 1H NMR was used to characterize the polystyrene macroinitiators and the block copolymers, and to confirm hydrolysis of the poly(tert-butyl acrylate) blocks to poly(acrylic acid).  相似文献   

14.
Structural investigation of polystyrene grafted and sulfonated poly(tetrafluoroethylene) (PTFE) membranes prepared by radiation-induced grafting of styrene onto commercial PTFE films and subsequent sulfonation was carried out by differential scanning calorimetry and X-ray diffraction. The effect of the structural changes taking place in the membranes during the preparation procedure (grafting and sulfonation) and the variation of the degree of grafting on melting temperature (Tm), glass transition temperature (Tg), heat of melting (ΔHm), and degree of crystallinity was studied. The melting temperature (Tm) was found to be independent of the degree of grafting unlike glass transition temperature (Tg), which was found to be a function of the degree of grafting. Moreover, the degree of crystallinity of the membranes was found to decrease with the increase in the degree of grafting. The results of this work suggest that grafting takes place in the entire amorphous region without any significant disruption in the crystalline structure of PTFE film and the decrease in the degree of crystallinity is mainly attributed to the dilution effect.  相似文献   

15.
The quantum-chemical investigation of tentative products of radiation-chemical transformations in PTFE under the action of γ radiation at a temperature higher than the melting point of the crystalline phase has been carried out. The excited electronic states of fluorinated alkylpolyenes of the general formula F3C-(CF=CF) n -CF3(n = 1?7), the same compounds with CFO terminal groups, and the dimers of monomer fragments containing two or more conjugated double bonds have been calculated by means of the semiempirical PM3 method. In addition, the excited states for PTFE chain fragments of different lengths have been calculated. On the basis of calculations, it has been concluded that the coloration of the irradiated PTFE may be caused by formation of polyconjugated structures in the polymer chain with the number of double bonds n = 2–6.  相似文献   

16.
Blends of poly(tetrafluoroethylene)/polyamide (PTFE/PA) were prepared to combine the good processing properties of PA with the excellent sliding properties of PTFE. For the compatibilizing of the immiscible components the chemical reaction of functional groups of modified PTFE (micro powder produced by electron irradiation in air) and polar PA during a reactive extrusion process was used. The parameter influencing the efficiency of the in‐situ reaction between both components were varied. The crystallization and melting behaviour of the different blends was investigated by DSC. In dependence on the degree of compatibilization the phenomenon of fractionated crystallization of the dispersed PTFE component was observed. In this way a qualitative characterization of the dispersity of PTFE in dependence on the functionality of the components and the processing conditions is possible, and therefore an estimation of the efficiency of the in‐situ reaction.  相似文献   

17.
The molecular mass distributions (MMD) of perfluorinated oligomers in products of tetra-fluoroethylene (TFE) radical polymerization in various solvents (telogens) were determined from an analysis of differential thermogravimetric curves and data of gel permeation chromatography and mass spectrometry. Radiolysis of the telogens generates radicals initiating polymer chain growth. The choice of the solvent and TFE concentration makes it possible to obtain oligomers with the controlled average chain length from 4 for 40 CF2 fragments and specified terminal groups. The polymerization of TFE in THF and propylene oxide affords oligomers with cyclic terminal groups capable of further polymerization due to ring opening. The appearance of two MMD maxima (low-molecular-weight at n 1 ~6–8 and high-molecular-weight at n 2 > 10 shifting towards high n with an increase in the TFE concentration) is caused by the formation of colloidal solutions of oligomers.  相似文献   

18.
The electrochemical preparation and molar mass characterization of conducting polymers, poly(thiophene-3-acetic acid) (poly(TPAA)), and poly(thiophene-co-thiophene-3-acetic acid) (poly(TP/TPAA)) are reported. RRDE results revealed that, unlike other conducting polymers, current efficiency during the deposition of poly(TPAA) is by far less than 1 due to significant solubility of the polymer. Up to 48% of the oxidation products of the disc electrode can dissipate into the bulk solution. These dissipated species are polymers in oxidized form and reactive towards reductant originally present in the coating solution. The low current efficiency necessitates the use of relatively high monomer concentration and high polymerization potential to obtain a conducting poly(TPAA) film. Characterization with gel permeation chromatography (GPC) of molar mass and its distribution has been carried out. The results show that up to 65% to 85% of the whole polymers are comprised of big molecules containing over 2000 monomer units, which indicates the possibility of cross-linking of polymer chains. The remaining parts of the polymers are relatively short chains containing several to dozens of monomers. Increase of TPAA content in the copolymers leads to better solubility and higher molar mass. The latter is accompanied by greater electronic conjugation in the polymer chains.  相似文献   

19.
Recently, a window of molar mass has been identified where poly(tetrafluoroethylene) (PTFE) homopolymer can be processed from the melt, but at the same time has good mechanical properties in the solid state, so called HD-PTFE®. This research evaluates the use of conventional melt-compounding with a co-rotating twin-screw to introduce a variety of fillers in this material. It was found that melt-compounding is indeed an efficient way to achieve a filler distribution of excellent homogeneity in HD-PTFE®.  相似文献   

20.
Using a low-energy Ar+ ion-beam with and without a reactive gas, chemically stable poly(tetrafluoroethylene) (PTFE) films were modified to have special surface features. The adhesion strength between the PTFE and the copper was significantly improved because of both changes in the surface topography and chemical interactions due to PTFE functionalization (oxidation and amination). The surface modification altered the failure mode from adhesive failure for the unmodified PTFE/Cu interface to cohesive failure for the surface-modified PTFE/Cu layer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号