首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.  相似文献   

2.
Irradiation combined with other processes can contribute to insuring food safety to consumers and controlling severe losses during transportation and commercialisation. We have demonstrated that using in synergy with other treatments; a lower dose could be used to eliminate pathogenic bacteria and permit a better protection of the sensorial quality and to prolong the shelf life of foods. Results indicated that some bacteria are more sensitive to irradiation under modified atmosphere (MAP) and the presence of active compound can increase the bacterial radiosensitivity by more than 4 times under air and by more than 10 times under MAP. Mild heat treatment or addition of natural antimicrobial compounds before irradiation treatment has also permitted an increase of Bacillus cereus radiosensitization. An increase of the bacterial radiosensitization of 1.5 and 1.56 was respectively observed. The effectiveness of the use of edible coating containing natural antimicrobial compounds, modified atmosphere packaging (MAP) or mild treatment before irradiation treatment was demonstrated in order to inactivate Listeria monocytogenes, Salmonella typhimurium, Escherichia coli and Bacillus cereus growth or B. cereus spore germination, to increase the bacterial sensitivity to irradiation, to reduce the water loss and to extend the shelf life of the food when stored at 4 °C. Also, the use of edible coating previously crosslinked by irradiation have permitted a better control of the active compounds release. Studies of combined treatments were used in ready to eat vegetables, fruits and meat products.  相似文献   

3.
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.  相似文献   

4.
Super‐thick diamond‐like carbon (DLC) film is a potential protective coating in corrosive environments. In the present work, three kinds of DLC films whose thickness and modulation periods are 4 µm and 3, 21 µm and 17 and 21 µm and 7, respectively, were fabricated on stainless steel. The effect of different thickness and modulation periods on corrosion and tribocorrosion behaviour of the DLC‐coating stainless steel was investigated in 3.5 wt% NaCl aqueous solution by a ball‐on‐flat tribometer equipped with a three‐electrode electrochemical cell. The DLC‐coating stainless steel served as a working electrode, and its OCP and potentiodynamic polarization were monitored before and during rubbing. The wear–corrosion mechanism of the DLC films was investigated by SEM. The results showed that the increasing thickness can prolong significantly lifetime of DLC films in NaCl aqueous solution. In particular, the modulation period has a significant impact on the tribocorrosion resistance of the DLC super‐thick films. The study suggested that the increasing thickness of compressive stress layer could suppress film damage by reducing crack propagation rate. Thus, the super‐thick DLC film with thickness of 21 µm and 7 periods presented the best tribocorrosion resistance among all studied films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Bio-enzymatic grafting phenolic acid to chitosan derivative is an efficient and environmentally friendly molecular synthesis technology. In the present study, N-carboxymethyl chitosan (CMCS) was grafted with gallic acid (GA) using recombinant bacterial laccase from Streptomyces coelicolor as a catalyst. GA and CMCS were successfully grafted as determined by measuring amino acid content, Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. Then, the effect of GA-g-CMCS coating on the freshness of strawberries at 20 ± 2 °C was explored. The physiological and biochemical quality indicators of strawberries during storage were monitored. The 1.5% GA-g-CMCS coating helped to protect the antioxidant properties and nutrients of strawberries and extend the shelf life. Specifically, it reduced the weight loss of strawberries during preservation (originally 12.7%) to 8.4%, maintained titratable acidity content (TA) residuals above 60% and reduced decay rate from 36.7% to 8.9%. As a bioactive compound, GA-g-CMCS has the potential to become an emerging food packing method. These results provide a theoretical basis and reference method for the subsequent synthesis and application of CMCS derivatives.  相似文献   

6.
7.
The acid fruit of the "xoconostle" cactus belongs to the genus Opuntia family of cacti. It is used as a functional food for its bioactive compounds. Several studies reported that xoconostle fruits have a high amount of ascorbic acid, betalains, phenols, tannins, and flavonoids. These compounds confer antioxidant, antibacterial, anti-inflammatory, and hepatoprotective gastroprotective activity. Xoconostle fruit extracts were tested by in vitro assays where the digestion conditions were simulated to measure their stability. At the same time, the extracts were protected by encapsulation (microencapsulation, multiple emulsions, and nanoemulsions). Applications of encapsulated extracts were probed in various food matrices (edible films, meat products, dairy, and fruit coatings). The xoconostle is a natural source of nutraceutical compounds, and the use of this fruit in the new food could help improve consumers’ health.  相似文献   

8.
The growing interest from consumers toward healthy and nutritious products and their benefits for health has increased the consumption of whole and processed fish. One of the main problems of fish is the short shelf life, especially when it is processed as in the case of burgers. The use of edible coating is an interesting strategy to extend the quality and safety of the product, reducing the need for artificial preservatives. This study evaluated the use of chitosan-based edible film formulated with sea fennel plant and sea fennel extracts. The analyses showed than the use of edible film extended the shelf life of fish burgers regardless of the incorporation of sea fennel mainly associated to the gas barrier properties and selective permeability of the film applied to the fish surface. The incorporation of sea fennel in the films did not produce any antimicrobial enhancement, although sea fennel (mostly extract) produced a better pH and enhanced the antioxidant properties and lipid oxidation of fish burgers. However, sensory analyses showed than fish burgers coated with sea fennel film plant had better acceptability than those with sea fennel extracts, probably due to the better odour and colour of the whole plant during storage. The study showed that the use of sea fennel plant at 12.5% extended the shelf life of fish burgers using a safe and clean label strategy.  相似文献   

9.
This paper deals with a new application of diblock methoxy polyethylene glycol‐polylactide block copolymers, a class of synthetic biomaterials largely studied in the pharmaceutical and biomedical fields owing to their favorable properties such as biocompatibility, biodegradability, low immunogenicity, and good mechanical properties. In this work, these materials were evaluated as additives for gastro‐soluble pharmaceutical coating aimed to reduce film stiffness and water permeability. Two copolymers with different polylactide chain lengths were synthesized and characterized in term of molecular weight and solid‐state properties. A series of free films with different hypromellose/copolymers ratio were prepared and characterized in terms of appearance, components miscibility, plasticity, and water vapor permeability. The obtained results demonstrate that copolymers effectively influence hypromellose film properties according to their concentration and molecular weight. Specifically, the addition of the copolymer with a molecular weight of 6.5 kDa in a ratio hypromellose:polymer 5:1, allowed to obtain films with good appearance, improved plasticization, and water permeability properties. For higher molecular weight, copolymer or different ratios was not possible to observe the improvement of all the properties at the same time. The results also make possible to define the critical features to improve in order to use block copolymers as additive in hypromellose film coating. The availability of new water‐soluble additives able to work as plasticizer and moisture sealer in polymeric films represents an important progress not only in the field of pharmaceutical coating but also in that of food coatings, as for example in the formulation of edible films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
About one-third of the world's entire food production is lost or wasted every year, in which the perishables such as fruits and vegetables account for the largest proportion due to their short shelf life. Therefore, it has attracted great attention to the development of food preservation. In this paper, a simple strategy for food preservation is developed. Chitin nanofiber aqueous suspension is used as the substrate, and ferulic acid (FA) acts as the physical crosslinker to obtain a multifunctional composite protective coating for fruits. The results of Zeta potential, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) indicate that there are multiple noncovalent interactions between FA and chitin nanofibers. The chitin/FA coating films show superior mechanical properties, water and oxygen resistance. They could effectively reduce the water loss rate, delay ripening, and resist oxidation and microbial invasion for the fresh strawberries and fresh-cut apples, indicating the potential in food preservation.  相似文献   

11.
Nonporous films were formed on polypropylene (PP) films using 3-aminopropyltriethoxysilane (APTEOS) as the only precursor. The PP film was modified by corona-plasma treatment to provide appropriate adhesion between coating layer and substrate. Gas permeation properties of coating films were evaluated, and the influences of water ratio and film storing time on the gas permeability were investigated. Structural and surface properties of coating layers were characterized by 29Si-NMR, FT-IR, and contact angle analyzer. The APTEOS coating films exhibit much higher barrier properties than PP film. The permeability coefficient of APTEOS coating film with water ratio of 3 is 0.011Barrer for nitrogen, 0.044Barrer for oxygen, and 0.002Barrer for carbon dioxide, while each permeability coefficient of PP bare film is 0.233, 0.858, and 2.886Barrer, respectively. The gas permeability coefficient is increased slowly along with storage time. Although additionally formed siloxane network may lead to a higher inorganic network density, the enhancement of gas permeability during storing period is largely attributed to film-swelling effect by the water vapor from atmosphere.  相似文献   

12.
The ordering processes of PS-b-P2VP block copolymer thin films with different processing histories were studied during solvent vapor annealing by in situ grazing incidence small-angle X-ray scattering (GISAXS). We compared cylinder-forming PS-b-P2VP thin films with 34 kg/mol molecular weight that were prepared in three different ways: spin coating, spin coating and subsequent solvent vapor annealing where the solvent vapor was removed instantaneously, and spin coating and subsequent solvent vapor annealing where the solvent vapor was removed slowly. Block copolymer thin films retained the morphology resulting from the different “processing histories” at smaller swelling ratios. This processing history was erased when the samples reached a higher swelling ratio (~1.4). After the solvent was slowly removed from the swollen film, the surface morphology was characterized by ex situ AFM. All samples showed the same morphology after solvent annealing regardless of the initial morphology, indicating the morphology of solvent annealed samples is determined by the polymer concentration in the swollen film and the solvent vapor removal rate, but not the processing history.  相似文献   

13.
Biopolymer active packaging is known to have low mechanical strength and highly brittle. Regardless to its disadvantage, polymers from natural sources have attracted serious attention since the non-renewable sources for example petroleum, the major precursor of plastic manufacturing become depleted. Starch-Chitosan for instance is a hybrid film that entirely green as it produced from a renewable material and totally degradable. The addition of chitosan in film packaging able to kill pathogen hence increases the food shelf life. Through nanotechnology advance, nanomaterial can be used for material reinforcement. Nowadays, greener approach could be applied by incorporating natural cellulose nanofiber into the film matrix. Oil palm empty fruit bunch (OPEFB) fiber that rich of cellulose contents could be treated chemically to purify the cellulose in the fiber. Cellulose fiber obtained was cut to a nano-size using acid hydrolysis. Transmission Electron Microscopy (T.E.M) obtained shown the nanofiber size was ranged between 1-100 nm in diameter. Nanocomposite film formulation, was constructed by varying the cellulose nanofiber incorporation between 2-10% per weight of starch. The strength of the films was measured as well as antimicrobial properties. The addition of 2% cellulose nanofiber into the film matrix exhibits high tensile strength with 5.25 Mpa compared to starch-chitosan hybrid film with 3.96 Mpa. However, no significant improvement in tensile strength was distinguished beyond that ratio. Antimicrobial analysis shows that the addition of cellulose nanofiber could increase the inhibition effect towards gram-positive bacteria but not towards gram-negative bacteria. The addition of 2% cellulose nanofiber increased the inhibition diameter towards gram positive bacteria, Bacillus subtilis up to 33%. However, inhibition towards Bacillus subtilis decreased with the incorporation of more cellulose nanofiber. In gram-negative bacteria Escherichia coli, the addition of cellulose nanofiber does not give significant effect to bacterial. In General, the addition of the unique structure of cellulose nanofiber in the starch based polymer system could enhance the mechanical strength of the film and increase the inhibition of the gram positive bacteria.  相似文献   

14.
Surface properties and enzymatic degradation of poly(l-lactide) (PLLA) end-capped with hydrophobic dodecyl and dodecanoyl groups were investigated by means of advancing contact angle (θa) measurement, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The θa values of end-capped PLLA films were larger than those of non-end-capped PLLA films, suggesting that the hydrophobic dodecyl and dodecanoyl groups were segregated on the film surface. The weight changes of end-capped PLLA thin films during enzymatic degradation in the presence of proteinase K were monitored by using a QCM technique. The relatively fast weight loss of PLLA film occurred during first few hours of degradation, followed by a decrease in the erosion rate. The erosion rate of PLLA films at the initial stage of degradation was dependent on the chain-end structure of PLLA molecules, and the value decreased with an increase in the amount of hydrophobic functional groups. The surface morphologies of PLLA thin films before and after degradation were characterized by AFM. After the enzymatic degradation, the surface of non-end-capped PLLA films was blemished homogeneously. In contrast, the end-capped PLLA thin films were degraded heterogeneously by the enzyme, and many hollows were formed on the film surface. From these results, it has been concluded that the introduction of hydrophobic functional groups at the chain-ends of PLLA molecules depressed the erosion rate at the initial stage of enzymatic degradation.  相似文献   

15.
Saskatoon berry fruits are a valuable source of micro- and macronutrients, sugars, and compounds with health-promoting properties, the properties of which change during storage. This study presents the effects of applied gaseous ozone at 10 ppm for 15 and 30 min on microbiological stability, sugar content, and bioactive compounds for three cultivars and three clones of Saskatoon berry fruit. The ozonation process had a positive effect on reducing the microbial load of the fruit, which was observed on day 7 of storage for the two variants of ozonation time of 15 and 30 min compared to the control and also on the sugar profile of the “Thiessen” fruit, as well as clones no 5/6 and type H compared to the control sample, which was non-ozonated fruit. In the Saskatoon berry fruits analyzed, 21 polyphenolic compounds were identified, of which four belonged to the anthocyanin group whose main representative was the 3-O-glucoside cyanidin. The ascorbic acid content and antioxidant activity (determined by DPPH· and ABTS+· methods) varied according to the cultivar and clone of the Saskatoon berry fruits analyzed and the ozone exposure time.  相似文献   

16.
The novel film structure of corn-zein coated on polypropylene (PP) synthetic film for packaging industry was developed to examine the feasibility of resulting coated films as an alternative water barrier performance for food packaging. The effects of coating formulation (solvent, corn-zein, plasticizer concentration and plasticizer type) on final properties of films were observed. Corn-zein is the most important protein of corn and has good film forming property. Composites structures of PP films coated with corn-zein were obtained through a simple solvent casting method. Polyethylene glycol (PEG) and glycerol (GLY) were used as plasticizer to increase film flexibility. Statistical analysis based on full factorial design was performed to observe coating formulation effects. The high water vapour barriers were obtained for films coated with coating formulation consisting of higher amounts of corn-zein plasticized by GLY. The lower glass transition temperatures (T g) of films were obtained by plasticization of films and T g decreased by increasing plasticizer content. The statistical analysis defined the key parameters of coating formulation that had major effects on the final properties of coated PP films as corn-zein, plasticizer concentration and plasticizer type. In conclusion, corn-zein coatings could have potential as an alternative to conventional synthetic polymers used in composite multilayer structures for food packaging applications.  相似文献   

17.
Nephelium lappaceum (N. lappaceum) and Nephelium ramboutan-ake (N. ramboutan-ake) are tropical fruits that gain popularity worldwide due to their tastiness. Currently, their potential to be used as pharmaceutical agents is underestimated. Chronic diseases such as cancer, diabetes and aging have high incidence rates in the modern world. Furthermore, pharmaceutical agents targeting pathogenic microorganisms have been hampered by the growing of antimicrobial resistance threats. The idea of food therapy leads to extensive nutraceuticals research on the potential of exotic fruits such as N. lappaceum and N. ramboutan-ake to act as supplements. Phytochemicals such as phenolic compounds that present in the fruit act as potent antioxidants that contribute to the protective effects against diseases induced by oxidative stress. Fruit residuals such as the peel and seeds hold greater nutraceutical potential than the edible part. This review highlights the antioxidant and biological activities (anti-neoplastic, anti-microbial, hypoglycemic actions and anti-aging), and chemical contents of different parts of N. lappaceum and N. ramboutan-ake. These fruits contain a diverse and important chemical profile that can alleviate or cure diseases.  相似文献   

18.
New bioactive nanocomposite films were prepared by compression molding method for food applications. Film matrix was composed of poly(lactic acid) containing cellulose nanocrystals (PLA-CNC). Nanocomposite films were converted to bioactive films using nisin as an antimicrobial agent by an adsorption coating method. Resulting antimicrobial films were then introduced in packages containing sliced cooked ham as a food model and stored for 14 days at 4 °C to determine their inhibiting capacity against Listeria monocytogenes and their physicochemical and structural properties. The study also focused on the nisin release from the films by using an agar diffusion bioassay. It was observed that mechanical properties such as tensile strength, tensile modulus, elongation at break and water vapor permeability values of the bioactive films were stable after 14 days of storage. Fourier transform infrared spectroscopy analysis allowed characterizing the adsorption of nisin onto PLA-CNC surface. Microbiological analysis of sliced cooked ham inoculated with L. monocytogenes (3 log CFU/g) allowed determining the potentiality of nisin as a strong antimicrobial agent in PLA-CNC-based films. Bioactive PLA-CNC-nisin films showed a significant reduction of L. monocytogenes in ham from day 1 and a total inhibition from day 3. The percentage of nisin release increased continuously from day 0 to day 14, up to 21 % at day 14. These results demonstrated the potential application of PLA-CNC-nisin films on controlling the growth of food pathogens in meat products.  相似文献   

19.
Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the food industry.  相似文献   

20.
Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号