首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel product consisting of a homogeneous tin oxide nanowall array with abundant oxygen deficiencies and partial Ni-Sn alloying onto a Ni foam substrate was successfully prepared using a facile solvothermal synthesis process with subsequent thermal treatment in a reductive atmosphere. Such a product could be directly used as integrated anodes for supercapacitors, which showed outstanding electrochemical properties with a maximum specific capacitance of 31.50 mAh·g−1 at 0.1 A·g−1, as well as good cycling performance, with a 1.35-fold increase in capacitance after 10,000 cycles. An asymmetric supercapacitor composed of the obtained product as the anode and activated carbon as the cathode was shown to achieve a high potential window of 1.4 V. The excellent electrochemical performance of the obtained product is mainly ascribed to the hierarchical structure provided by the integrated, vertically grown nanowall array on 3D Ni foam, the existence of oxygen deficiency and the formation of Ni-Sn alloys in the nanostructures. This work provides a general strategy for preparing other high-performance metal oxide electrodes for electrochemical applications.  相似文献   

2.
Low-grade heat energy recycling is the key technology of waste-heat utilization, which needs to be improved. Here, we use a zinc-assisted solid-state pyrolysis route to prepare zinc-guided 3D graphene (ZnG), a 3D porous graphene with the interconnected structure. The obtained ZnG, with a high specific surface area of 1817 m2·g−1 and abundant micropores and mesopores, gives a specific capacitance of 139 F·g−1 in a neutral electrolyte when used as electrode material for supercapacitors. At a high current density of 8 A·g−1, the capacitance retention is 93% after 10,000 cycles. When ZnG is used for thermally chargeable supercapacitors, the thermoelectric conversion of the low-grade heat energy is successfully realized. This work thus provides a demonstration for low-grade heat energy conversion.  相似文献   

3.

In this paper, three-dimensional graphene (3DG) electrode material was prepared by hydrothermal reduction using graphene oxide as precursor. Its morphology and structure were characterized by SEM, BET, XRD, Raman, FTIR and TG, and its electrochemical performance was also measured. The results showed that 3DG possessed hierarchical pore structure, large specific surface area, high specific capacitance and low impedance. Using 3DG as electrode material for electrosorption of UO22+, it showed that the saturated adsorption capacity can reach up to 113.80 mg g?1 and the adsorption rate is 0.32 mg g?1 min?1 at a given optimal applied voltage of 1.8 V.

  相似文献   

4.
Novel polyacrylamide gel electrolytes (PGEs) doped with nano carbons with enhanced electrochemical, thermal, and mechanical properties are presented. Carboxylated carbon nanotubes (fCNTs), graphene oxide sheets (GO), and the hybrid of fCNT/GO were embedded in the PGEs to serve as supercapacitor (SC) electrolytes. Thermal stability of the unmodified PGE increased with the addition of the nano carbons which led to lower capacitance degradation and longer cycling life of the SCs. The fCNT/GO-PGE showed the best thermal stability, which was 50% higher than original PGE. Viscoelastic properties of PGEs were also improved with the incorporation of GO and fCNT/GO. Oxygen-containing functional groups in GO and fCNT/GO hydrogen bonded with the polymer chains and improved the elasticity of PGEs. The fCNT-PGE demonstrated a slightly lower viscous strain uninform distribution of CNTs in the polymer matrix and the defects formed within. Furthermore, ion diffusion between GO layers was enhanced in fCNT/GO-PGE because fCNT decreased the aggregation of GO sheets and improved the ion channels, increasing the gel ionic conductivity from 41 to 132 mS cm−1. Finally, MnO2-based supercapacitors using PGE, fCNT-PGE, GO-PGE, and fCNT/GO-PGE electrolytes were fabricated with the electrode-specific capacitance measured to be 39.5, 65.5, 77.6, and 83.3 F·g−1, respectively. This research demonstrates the effectiveness of nano carbons as dopants in polymer gel electrolytes for property enhancements.  相似文献   

5.
Graphene‐based hydrogels can be used as supercapacitor electrodes because of their excellent conductivity, their large surface area and their high compatibility with electrolytes. Nevertheless, the large aspect ratio of graphene sheets limits the kinetics of processes occurring in the electrode of supercapacitors. In this study, we have introduced in‐plane and out‐of‐plane pores into a graphene–nickel hydroxide (Ni(OH)2) hybrid hydrogel, which facilitates charge and ion transport in the electrode. Due to its optimised chemistry and architecture, the hybrid electrode demonstrates excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the Ni(OH)2 in the hybrid contributes a capacitance as high as 3138.5 F g?1, which is comparable to its theoretical capacitance, suggesting that such structure facilitates effectively charge‐transfer reactions in electrodes. This work provides a facile pathway for tailoring the porosity of graphene‐based materials for improved performances. Moreover, this work has also furthered our understanding in the effect of pore and hydrogel structures on the electrochemical properties of materials.  相似文献   

6.
采用简单的超声自组装法制备了石墨烯/三氧化钼纳米带复合材料。最终产物的组成和结构采用多种不同的手段进行了表征,包括扫描电镜、透射电镜、X射线衍射、拉曼光谱以及热分析等。该复合材料可以用作超级电容器电极材料。电化学实验结果表明石墨烯/三氧化钼纳米带复合材料比电容可达到285.5 F·g-1,且在电流密度为1 A·g-1时经过1 000次循环后其电容值能保持初始值的99.5%.  相似文献   

7.
采用简单的超声自组装法制备了石墨烯/三氧化钼纳米带复合材料。最终产物的组成和结构采用多种不同的手段进行了表征,包括扫描电镜、透射电镜、X射线衍射、拉曼光谱以及热分析等。该复合材料可以用作超级电容器电极材料。电化学实验结果表明石墨烯/三氧化钼纳米带复合材料比电容可达到285.5 F·g-1,且在电流密度为1 A·g-1时经过1 000次循环后其电容值能保持初始值的99.5%.  相似文献   

8.
The development of electrode materials for supercapacitors (SCs) is greatly desired, and this still poses an immense challenge for researchers. Cobalt silicate (Co2SiO4, denoted as CoSi) with a high theoretical capacity is deemed to be one of the sustainable electrode materials for SCs. However, its achieved electrochemical properties are still not satisfying. Herein, the phosphorus (P)-doped cobalt silicate, denoted as PCoSi, is synthesized by a calcining strategy. The PCoSi exhibits 1D nanobelts with a specific surface area of 46 m2∙g−1, and it can significantly improve the electrochemical properties of CoSi. As a supercapacitor’s (SC’s) electrode, the specific capacitance of PCoSi attains 434 F∙g−1 at 0.5 A∙g−1, which is much higher than the value of CoSi (244 F∙g−1 at 0.5 A∙g−1). The synergy between the composition and structure endows PCoSi with attractive electrochemical properties. This work provides a novel strategy to improve the electrochemical performances of transition metal silicates.  相似文献   

9.
A new approach to expand the accessible voltage window of electrochemical energy storage systems, based on so-called “water-in-salt” electrolytes, has been expounded recently. Although studies of transport in concentrated electrolytes date back over several decades, the recent demonstration that concentrated aqueous electrolyte systems can be used in the lithium ion battery context has rekindled interest in the electrochemical properties of highly concentrated aqueous electrolytes. The original aqueous lithium ion battery conception was based on the use of concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide, although these electrolytes still possess some drawbacks including cost, toxicity, and safety. In this work we describe the electrochemical behavior of a simple 1 : 1 electrolyte based on highly concentrated aqueous solutions of potassium fluoride (KF). Highly ordered pyrolytic graphite (HOPG) is used as well-defined model carbon to study the electrochemical properties of the electrolyte, as well as its basal plane capacitance, from a microscopic perspective: the KF electrolyte exhibits an unusually wide potential window (up to 2.6 V). The faradaic response on HOPG is also reported using K3Fe(CN)6 as a model redox probe: the highly concentrated electrolyte provides good electrochemical reversibility and protects the HOPG surface from adsorption of contaminants. Moreover, this electrolyte was applied to symmetrical supercapacitors (using graphene and activated carbon as active materials) in order to quantify its performance in energy storage applications. It is found that the activated carbon and graphene supercapacitors demonstrate high gravimetric capacitance (221 F g−1 for activated carbon, and 56 F g−1 for graphene), a stable working voltage window of 2.0 V, which is significantly higher than the usual range of water-based capacitors, and excellent stability over 10 000 cycles. These results provide fundamental insight into the wider applicability of highly concentrated electrolytes, which should enable their application in future of energy storage technologies.

The stability of water-in-salt electrolyte systems is investigated using highly concentrated solutions of KF(aq) with graphite as a model system.  相似文献   

10.
Porous nitrogen-doped graphene (PNG) has been prepared via simple thermal treatment of graphene oxide and urea, and the morphology and structure of the PNG have been characterized by using a range of electron microscopy, X-ray photoelectron spectroscopy, and other techniques. The electrochemical performances of the PNG have been investigated in an ionic liquid electrolyte by cyclic voltammetry and galvanostatic charge-discharge via both three-electrode and two-electrode configurations. The PNG electrode delivers a specific capacitance of 310 F g?1 at 1 A g?1 with good cycling stability over 4000 cycles. The high electrochemical performance is ascribed to the porous structure and nitrogen-doping in the PNG. The porous structure enables high specific surface area and rapid ion mobility, contributing to double layer capacitance, while the N-doping enhances electrochemical activity and electric conductivity, contributing to pseudocapacitance. Meanwhile, the ionic liquid electrolyte enables a very wide working voltage of 3 V, leading to a high energy density up to 163.8 W h kg?1. The fabricated supercapacitor can light up a LED for a long while with low self-discharge, showing good potential for practical application.  相似文献   

11.
Graphene, in spite of exceptional physio-chemical properties, still faces great limitations in its use and industrial scale-up as highly selective membranes (enhanced ratio of proton conductivity to fuel cross-over) in liquid alcohol fuel cells (LAFCs), due to complexity and high cost of prevailing production methods. To resolve these issues, a facile, low-cost and eco-friendly approach of liquid phase exfoliation (bath sonication) of graphite to obtain graphene and spray depositing the prepared graphene flakes, above anode catalyst layer (near the membrane in the membrane electrode assembly (MEA)) as barrier layer at different weight percentages relative to the base membrane Nafion 115 was utilized in this work. The 5 wt.% nano-graphene layer raises 1 M methanol/oxygen fuel cell power density by 38% to 91 mW·cm−2, compared to standard membrane electrode assembly (MEA) performance of 63 mW·cm−2, owing to less methanol crossover with mild decrease in proton conductivity, showing negligible voltage decays over 20 h of operation at 50 mA·cm−2. Overall, this work opens three prominent favorable prospects: exploring the usage of nano-materials prepared by liquid phase exfoliation approach, their effective usage in ion-transport membrane region of MEA and enhancing fuel cell power performance.  相似文献   

12.
首先采用溶液法在碳布上生长Co-MOF二维纳米片,通过高温退火和刻蚀后得到MOF衍生多孔碳纳米片。以Co-MOF衍生的多孔碳纳米片/碳布(CNS/CC)作为碳基骨架,采用电化学沉积法负载高活性氮掺杂石墨烯量子点(N-GQDs),制备得到分级多孔结构的N-GQD/CNS/CC复合材料。组装成自支撑且无粘结剂的N-GQD/CNS/CC电极,当电流密度为1 A·g~(-1)时,其比电容高达423 F·g~(-1)。通过储能机制和电容贡献机制的研究表明,在碳纤维上原位生长的具有高双电层电容的CNS和表面负载具有高赝电容的N-GQDs之间相互协同作用,使得N-GQD/CNS/CC电极具有高电容性能,是一种理想的超级电容器电极材料。电极材料的高导电、分级多孔结构有利于电子的传输和电解质离子的扩散,具有良好的动力学性能,能快速充放电和具有优异的倍率特性。将电极组装成对称型超级电容器,功率密度为250 W·kg~(-1)时对应的能量密度达到7.9 Wh·kg~(-1),且经过10 000次循环后电容保持率为91.2%,说明氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片复合材料是一种电化学性能稳定的具有高电容性能的全碳电极材料。  相似文献   

13.
采用电化学沉积在碳纳米管纤维上复合锌钴氢氧化物纳米片(CNTF@ZnCo-OH),并研究其电化学性能。实验结果表明CNTF@ZnCo-OH电极在2 A·g-1的电流密度下比电容为748 F·g-1,在10 A·g-1的电流密度下循环2 000圈以后,比电容保持率高达110.4%。该优异循环性能得益于碳纳米管纤维基底的网络结构和ZnCo-OH的纳米片状结构。以CNTF@RGO(石墨烯)为负极、CNTF@ZnCo-OH为正极,组装线状全固态非对称CNTF@ZnCo-OH//CNTF@RGO超级电容器。该器件在0.5 A·g-1电流密度下比电容为70 F·g-1,2 000次循环后电容保持率为79.6%,并且在不同的弯曲状态下保持电化学性能不变,具有优良的机械稳定性。该非对称线状器件可以在0.8~1.4 V之间工作,其能量密度高达19.1 Wh·kg-1,对应的功率密度为1 400.3 W·kg-1。2个30 mm长的线状器件可持续点亮LED灯10 s。  相似文献   

14.
使用化学连接的方法制备一种石墨烯-聚吡咯纳米管杂化材料。使用扫描电镜、透射电镜、傅里叶变换红外光谱仪、光电子能谱仪以及电化学工作站对产物的形貌、结构以及电容特性进行表征。结果表明,在杂化材料中石墨烯和聚吡咯纳米管分散均匀,在石墨烯与聚吡咯纳米管之间通过酰胺基团形成了共价键连接。此杂化材料在0.3 A.g-1电流密度下的比电容为1 368F.g-1,在1.5 A.g-1电流密度下的比电容为759 F.g-1,在1 000次循环伏安循环后的剩余比电容值为初始比电容值的85.5%,显示出良好的电容特性。  相似文献   

15.
A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L−1, a detection limit of 0.03 mg L−1, a sensitivity of 67 µA mg−1 L cm−2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L−1. Sensor selectivity was excellent, and repeatability (%RSD < 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography–mass spectrometric method.  相似文献   

16.
Lithium-rich manganese-based layered cathode materials are considered to be one of the best options for next-generation lithium-ion batteries, owing to their ultra-high specific capacity (>250 mAh·g−1) and platform voltage. However, their poor cycling stability, caused by the release of lattice oxygen as well as the electrode/electrolyte side reactions accompanying complex phase transformation, makes it difficult to use this material in practical applications. In this work, we suggest a molybdenum surface modification strategy to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2. The Mo-modified Li1.2Mn0.54Ni0.13Co0.13O2 material exhibits an enhanced discharge specific capacity of up to 290.5 mAh·g−1 (20 mA·g−1) and a capacity retention rate of 82% (300 cycles at 200 mA·g−1), compared with 261.2 mAh·g−1 and a 70% retention rate for the material without Mo modification. The significantly enhanced performance of the modified material can be ascribed to the formation of a Mo-compound-involved nanolayer on the surface of the materials, which effectively lessens the electrolyte corrosion of the cathode, as well as the activation of Mo6+ towards Ni2+/Ni4+ redox couples and the pre-activation of a Mo compound. This study offers a facile and effective strategy to address the poor cyclability of lithium-rich manganese-based layered cathode materials.  相似文献   

17.
Element doping and nanoparticle decoration of graphene is an effective strategy to fabricate biosensor electrodes for specific biomedical signal detections. In this study, a novel nonenzymatic glucose sensor electrode was developed with copper oxide (CuO) and boron-doped graphene oxide (B-GO), which was firstly used to reveal rhubarb extraction’s inhibitive activity toward α-amylase. The 1-pyreneboronic acid (PBA)-GO-CuO nanocomposite was prepared by a hydrothermal method, and its successful boron doping was confirmed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), in which the boron doping rate is unprecedentedly up to 9.6%. The CuO load reaches ~12.5 wt.%. Further electrochemical results showed that in the enlarged cyclic voltammograms diagram, the electron-deficient boron doping sites made it easier for the electron transfer in graphene, promoting the valence transition from CuO to the electrode surface. Moreover, the sensor platform was ultrasensitive to glucose with a detection limit of 0.7 μM and high sensitivity of 906 μA mM−1 cm−2, ensuring the sensitive monitoring of enzyme activity. The inhibition rate of acarbose, a model inhibitor, is proportional to the logarithm of concentration in the range of 10−9–10−3 M with the correlation coefficient of R2 = 0.996, and an ultralow limit of detection of ~1 × 10−9 M by the developed method using the PBA-GO-CuO electrode. The inhibiting ability of Rhein-8-b-D-glucopyranoside, which is isolated from natural medicines, was also evaluated. The constructed sensor platform was proven to be sensitive and selective as well as cost-effective, facile, and reliable, making it promising as a candidate for α-amylase inhibitor screening.  相似文献   

18.
In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g−1 at 0.7 A g−1 and good rate capability of 34.8% at 4.9 A g−1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.  相似文献   

19.
A rapid and sensitive technique for frauds determination in vanilla flavors was developed. The method comprises separation by liquid chromatography followed by an electrochemical detection using a homemade screen-printed carbon electrode modified with aluminium-doped zirconia nanoparticles (Al-ZrO2-NPs/SPCE). The prepared nanomaterials (Al-ZrO2-NPs) were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). This method allows for the determination of six phenolic compounds of vanilla flavors, namely, vanillin, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid and ethyl vanillin in a linear range between 0.5 and 25 µg g−1, with relative standard deviation values from 2.89 to 4.76%. Meanwhile, the limits of detection and quantification were in the range of 0.10 to 0.14 µg g−1 and 0.33 to 0.48 µg g−1, respectively. In addition, the Al-ZrO2-NPs/SPCE method displayed a good reproducibility, high sensitivity, and good selectivity towards the determination of the vanilla phenolic compounds, making it suitable for the determination of vanilla phenolic compounds in vanilla real extracts products.  相似文献   

20.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号