首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An apparatus is described and a method discussed for determining the rheological characteristics of elastic liquids during extension at constant rates of deformation and extension. The material studied was polyisobutylene of molecular weight 7 × 104. At low constant deformation rates steady-flow regimes were achieved, with corresponding equilibrium high elastic strains. A detailed study has been made of the process of attainment of steady-flow regimes and it is shown that before steady flow is reached the curve of longitudinal viscosity versus strain passes through a maximum. As the rate of deformation rises, the strains at which steady–state flow regimes are achieved increase, and the time required to reach these regimes decreases. Qualitatively this occurs in the same way as upon shear. The dependence of equilibrium high-elastic strains (under steady-flow regimes) on the rate of deformation has been determined. At steady-flow regimes the stress depends linearly on the rate of deformation at low values of the stress. Under such conditions Trouton's formula is valid. At constant rates of extension the stress versus time curve passes through a maximum which becomes higher with increasing extension rates.  相似文献   

2.
Rheology and viscoelastic behavior of polystyrene (PS)/silica microcomposites and nanocomposites were studied. The apparent viscosity, transient shear stress growth after startup shear flow and stress relaxation after cessation of flow at various shear rates, the complex dynamic viscosity, the storage and loss moduli at small and large strain amplitudes and various frequencies were performed. The effect of size, shape and volume concentration of silica was discussed. The maximum volume concentration, corresponding to the concentration at which the relative viscosity of mixtures goes to infinity, with respect to the hydrodynamic contribution of the particles and to polymer-filler interactions was obtained. The difference between the yield stress and residual stress is shown. The domain of equivalence between the apparent viscosity as a function of the shear rate in steady state flow and the complex dynamic viscosity as a function of the strain rate amplitude in highly nonlinear region of oscillatory flow was established. The viscoelastic behavior was interpreted based on the morphology of microcomposites and nanocomposites observed by SEM.  相似文献   

3.
Studies have been made on the dynamic and steady-shear melt rheology of an ethylene–methacrylic acid copolymer and two of its salts obtained by partial neutralization with sodium and with calcium bases. Measurements were made with a Weissenberg rheogoniometer over a broad range of shear rates and frequency in the temperature interval mainly from 100 to 160°C. The temperature coefficients of dynamic and steady shear viscosity are evaluated at both constant shear rate and constant stress. Likewise, complex dynamic viscosities and apparent high steady-flow viscosities and intercompared at equivalent frequencies and shear rates. The un-ionized acid copolymer shows good correlation between the frequency dependence of the complex viscosity and the shear rate dependence of the apparent viscosity. This is not true for either the sodium salt or the calcium salt. These results are consistent with the two-phase structural model for these materials, i.e., a matrix of hydrocarbon in which are embedded ionic domains.  相似文献   

4.
Effects of fumed silica on the viscosity of acrylic latex system were studied by recording curves of the shear complex viscosity over shear rate and temperature and by measuring apparent viscosity with a variety of fumed silica concentrations at various steady angular velocities. Results show that the fumed silica obviously affects the shape and value of curves on the amplitude of complex viscosity versus either shear rate or temperature diagrams. Both dynamic and steady shear measurements illustrate a shear thinning phenomena for the acrylic latex filled with fumed silica. Dependence of the apparent viscosity on the fumed silica concentration can be satisfactorily modeled by the Krieger‐Dougherty expression. A fitted parameter that quantitatively describes the sensitivity of the effect of fumed silica on the acrylic latex system increases with angular velocity, but decreases with latex solid content.  相似文献   

5.
The influence of periodic shear deformation and steady flow on a typical amorphous polymer is discussed. Forced sinusoidal vibrations were applied and the complex viscosity was determined. The action of a vibration of finite amplitude is equivalent to steady flow with a definite finite shear rate. Both processes cause truncation of the long-time part of the relaxation specturm. It may be accepted to a first approximation that the long-time boundary of the remaining part of the relaxation spectrum conforms to the long-time part of the initial spectrum, even if the plateau region of the spectrum is truncated. The concept of limiting truncation of the short-time part of the spectrum is introduced, this corresponding to the minimum absolute value of the complex viscosity versus reduced frequency and the lowest values of the dynamic and apparent viscosities. With an approximate representation of the relaxation spectrum, calculations were made of the maximum values of the viscosity and the coefficient relating the first difference of normal stresses to the square of the shear rate, and also of the apparent viscosity and normal stresses as functions of the shear rate. The calculated values are compared with experimental measurements, and it is shown that the correlation of the apparent viscosity and the absolute value of the complex viscosity is distributed at high frequencies, being superseded by a correlation between the apparent and dynamic viscosities.  相似文献   

6.
The rheological properties of concentrated suspensions of metal oxides dispersed in transformer oil, which are used as electrorheological fluids, are systematically studied. Colloidal particles have intermediate sizes between nano- and microsized scales. Low-amplitude dynamic measurements show that the storage moduli of the examined suspensions are independent of frequency and these materials should be considered as solidlike elastic media. The storage modulus is proportional to the five-powdered particle volume concentration. At the same time, a transition through an apparent yield stress with a reduction in the viscosity by approximately six orders of magnitude is distinctly seen upon shear deformation. The character of the rheological behavior depends on the regime of suspension deformation. At very low shear rates, a steady flow is possible; however, upon an increase in the rate, an unsteady regime is realized with development of self-oscillations. When constant shear stresses are preset, in some range of stresses, thickening of the medium takes place, which can also be accompanied by self-oscillations. In order to gain insight into the nature of this effect, measurements are performed for samples with different volume/surface ratios, which show that, in some deformation regimes, suspension is separated into layers and slipping occurs along a low-viscosity layer with a thickness of several dozen microns. Direct observations show a distinct structural inhomogeneity of the flow. The separation and motion of layers with different compositions explain the transition to the flow with the lowest apparent Newtonian viscosity. Thus, the deformation of concentrated suspensions is associated with self-oscillations of stresses and slipping along a low-viscosity interlayer.  相似文献   

7.
We found that the character of negative thixotropy of partially hydrolyzed polyacrylamide in aqueous glycerol strongly depends on polymer concentration, glycerol content and shear rate applied. At low polymer and glycerol concentrations, shear stress and viscosity slowly increased during shearing to a limiting value. In addition to this behavior, a steep increase in shear stress as well as normal stress followed by their pronounced oscillations occurred at higher concentrations of both components and at higher shear rates. Similarly to the negative thixotropic effect in solutions of other polymers in organic solvents, the hydrodynamic conditions in which the effects set in seem to be controlled by the shear stress acting in the flowing solution; initial kinetics of the effect depends on solvent viscosity and shear stress applied. To explain the influence of the glycerol content and degree of ionization of the polymer on the minimum shear stress at which the effect sets in, a decisive role of intermolecular electrostatic repulsions in association of the polymer molecules in shear field is assumed.  相似文献   

8.
PVC plastisol exhibits pseudo-plastic flow in steady shear; that is, viscosity decreases with the increasing shear rate. At higher shear rates viscosity reaches a minimum and then increases, i.e., dilatant behavior. Previously, pseudo-plastic behavior was explained by a mechanism in which the suspended particles partition into an immobilized layer and a mobile phase. The development of the immobilized layer with the increase in shear rate was shown to quantitatively account for pseudo-plastic behavior. In higher shear rates dilatation of the immobilized layer was shown to be the cause of dilatacy. At even higher shear rates the immobilized layer fractures. In this paper the viscosity minimum was interpreted as the yielding of the immobilized layer. Subsequently, data in the literature were analyzed to find criteria for the yielding and fracture of the immobilized layer. Yielding was found to obey Coulomb's criterion, from which the coefficient of friction and the cohesive strength of the immobilized layer were evaluated. These properties were controlled by the nature of particle assembly in the immobilized layer and the plasticizer type had only a minor effect. The value of the coefficient of friction was on the lower side and within the range of values found in the literature for other materials. There were two modes of fracture of the immobilized layer, one with low strength, low strain to break, and the other with high strength, high strain to break. The former is analogous to the brittle fracture of solids and the latter ductile failure. The strength of brittle fracture was somewhat higher than cohesive strength, which was evaluated from yielding data. This is akin to Griffith's criterion for brittle fracture of a solid. Ductile failure occurred when the shear stress exceeded normal stress.  相似文献   

9.
A comprehensive investigation of rheological properties of linear and branched styrene-acrylonitrile copolymer specimens with similar molecular characteristics has been carried out. During the steady-state shear flow, the viscosity properties of both specimens are described by the Cross equation. In this case, the branched copolymer is characterized by a higher viscosity and shear thinning degree as well as by substantially lower shear rate values corresponding to transition to the non-Newtonian flow region. The elasticity of the branched copolymer melt (estimated from the value of the first normal stress difference) is considerably higher than that of the linear. This is reflected on the characteristics of occurrence of unstable flow at high shear rates. Rougher extrudate surface distortions are characteristic for the branched copolymer, and the shear rate corresponding to their occurrence is noticeably lower than for the linear copolymer. The dynamic characteristics of the copolymers being compared also attest to a greater elasticity of the branched specimen. An investigation of the viscoelastic properties in a wide temperature range allowed constructing a generalized frequency dependence of dynamic moduli encompassing various regions of the relaxation states of the copolymer specimens. Continuous relaxation spectra were calculated by means of the Mellin transform. It is shown that relaxation phenomena caused by segmental mobility doesn’t depend on the presence of branchings, whereas branching of the chain has a substantial effect on translation mobility of the chain as a whole. Branching leads to a noticeable increase of transient elongation viscosity but has almost no effect of strain hardening of the melt.  相似文献   

10.
Using nonequilibrium molecular dynamics simulations, we study the non-Newtonian rheological behaviors of a monoatomic fluid governed by the Lennard-Jones potential. Both steady Couette and oscillatory shear flows are investigated. Shear thinning and normal stress effects are observed in the steady Couette flow simulations. The radial distribution function is calculated at different shear rates to exhibit the change of the microscopic structure of molecules due to shear. We observe that for a larger shear rate the repulsion between molecules is more powerful while the attraction is weaker, and the above phenomena can also be confirmed by the analyses of the potential energy. By applying an oscillatory shear to the system, several findings are worth mentioning here:First, the phase difference between the shear stress and shear rate increases with the frequency. Second, the real part of complex viscosity first increases and then decreases while the imaginary part tends to increase monotonically, which results in the increase of the proportion of the imaginary part to the real part with the increasing frequency. Third, the ratio of the elastic modulus to the viscous modulus also increases with the frequency. These phenomena all indicate the appearance of viscoelasticity and the domination of elasticity over viscosity at high oscillation frequency for Lennard-Jones fluids.  相似文献   

11.
The microscopic structure of shear-induced gels for a mixed solution of 2-hydroxyethyl cellulose and nanometer-size spherical droplets has been investigated by in situ small-angle neutron scattering (SANS) with a Couette geometry as a function of shear rate gamma. With increasing gamma, the viscosity increased rapidly at gamma approximately 4.0 s(-1), followed by a shear thinning. After cessation of shear, the system exhibited an extraordinarily large steady viscosity. This phenomenon was observed as a shear-induced sol-gel transition. Real-time SANS measurements showed an increase in the scattering intensity exclusively at low scattering angle region. However, neither orientation of polymer chains nor droplet deformation was detected and the SANS patterns remained isotropic irrespective of gamma. It took about a few days for the gel to recover its original sol state. A possible mechanism of gelation is proposed from the viewpoint of shear-induced percolation transition.  相似文献   

12.
The ionic liquid of 1-allyl-3-methylimidazolium chloride ([amim]Cl) was used as the good solvent to dissolve celluloses. Cellulose concentration covers the range of 0.1-3.0 wt %, spanning both the dilute and semidilute regimes. The rheological properties of the cellulose ionic liquid solutions have been investigated by steady shear and oscillatory shear measurements in this study. In the steady shear measurements, all the cellulose solutions show a shear thinning behavior at high shear rates; however, the dilute cellulose solutions show another shear thinning region at low shear rates, which may reflect the characteristics of the [amim]Cl solvent. In the oscillatory shear measurements, for the dilute regime, the reduced dimensionless moduli are obtained by extrapolation of the viscoelastic measurements for the dilute solutions to infinite dilution. The frequency dependences of the reduced dimensionless moduli are intermediate between the predictions from the Zimm model and elongated rodlike model theories, while the fitting by using a hybrid model combining these two model theories agrees well with the experimental results. For the semidilute regime, the frequency dependences of moduli change from the Zimm-like behavior to the Rouse-like behavior with increasing cellulose concentration. In the studied concentration range, the effects of molecular weight and temperature on solution viscoelasticities and the relationship between steady shear viscosity and dynamic shear viscosity are presented. Results show that the solution viscoelasticity greatly depends on the molecular weight of cellulose; the empirical time-temperature superposition principle holds true at the experimental temperatures, while the Cox-Merz rule fails for the solutions investigated in this study.  相似文献   

13.
炭黑结合橡胶对天然橡胶性能的影响   总被引:1,自引:0,他引:1  
本文研究了天然橡胶(NR)与五种不同类型炭黑的结合橡胶对其混炼胶的应力-应变、流变性质等的影响。结果表明,NR与炭黑的结合橡胶量随炭黑结构和表面积增加而增加。结合橡胶的增加使NR在低剪切下的本体粘度、弹性恢复性和强度增加,塑性和粘着性降低;在高剪切下流动性变差,挤出物收缩则有所下降。此外,结合橡胶的增加也增加了硫化胶的交联度,因此模量、硬度和耐磨性提高,抗张强度和伸长率却有所下降。  相似文献   

14.
Low shear rate and low frequency measurements focused on the extremely slow dynamics of a three-dimensional body-centered cubic (BCC) structure of an asymmetric block copolymer under nanophase-separated conditions. The material studied was poly(styrene-b-ethylene-co-butylene-b-styrene) swollen in a hydrocarbon oil selective for the midblock. Transient viscosities during start-up of shear flow at extremely low shear rates are governed by very long relaxation times and by a modulus that is nearly the same as the plateau modulus obtained from oscillatory shear experiments. Only at extremely low shear rates a zero shear viscosity could be attained. Its very high value is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude when increasing the shear rate. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. The SAXS profile recorded on such a sample showed a first-order maximum followed by a broad shoulder indicating a liquid-like short-range order of PS nanospheres in the swollen EB matrix.  相似文献   

15.
New structural phenomena which can be produced in polymers at low temperatures or by the action of high forces are described and discussed. Experimental evidence supports the argument that the deformation of polymers can develop not only as a result of conformational changes of the macromolecules proper but also by transformation of more complex structural formations. The consequence of this phenomenon is the possibility of large deformations far below the glass-transition temperature in a crystalline polymer with well-developed supermolecular structure. This type of deformation takes place without molecular orientation. Another phenomenon discussed is the sharp change of supermolecular structure in crystalline polymers caused by the action of a shock wave. These effects ought to be connected with an energetic rather than entropic deformation mechanism because the transformations occur at a supermolecular level. Thus, there can be two extreme types of deformation processes: the well-known conformation changes that occur at a molecular level, and the deformation of supermolecular structures. Examples of the pure form of the latter type of mechanism obtained under extreme conditions are given.  相似文献   

16.
Intercalated nanocomposites constituted of poly(butyl methacrylate) (PBMA) as the matrix and an organically modified montmorillonite as the nanosize filler were prepared and rheologically characterized in detail. The rheological behavior of the composites showed dependence on both temperature and clay content. For composites of low clay contents, the steady shear viscosity showed a Newtonian plateau in the low shear rate region at low temperatures and the plateau was replaced by a shear-thinning curve when the temperature was raised. For composites of higher clay contents, strong shear-thinning behavior were observed at all shear rates and all temperatures. The viscoelastic data of the composites showed unusual terminal behavior of a decreasing terminal slope at low frequencies with increasing temperature and clay loading. X-ray diffraction spectra showed that annealing process at higher temperatures shifted the Bragg reflection peaks to a lower angle and broadened the peaks, which provided the evidence for the existence of a temperature-induced solid-like structure that was responsible for the shear thinning and the unusual terminal viscoelastic behavior.  相似文献   

17.
采用DSR-200动态应力流变仪研究了磺化度为0.98%(摩尔分数)的轻度磺化聚苯乙烯(SPS)离聚物及其锌盐(ZnSPS)与聚苯乙烯(PS)的共混物(PS/SPS,PS/ZnSPS)的流变性能.由于离聚物中离子聚集的物理交联作用,使其流变性能与PS相比有明显差别.动态频率实验结果表明,所有样品均可采用时温等效处理.另外,在与分子链运动相关的低频区,由于离子聚集的作用使得离聚物的模量远大于PS的模量.离聚物在稳态剪切作用下,由于离子聚集的破坏而表现出明显的屈服现象,并能用Utracki的屈服应力公式表征其屈服应力和零切粘度.此外,离聚物的屈服现象还与温度相关.由于动态和稳态实验分别测试离子聚集存在和破坏的不同材料状态,因此对离聚物无法应用Cox-Merz规则.动态和稳态实验结果均表明,PS/SPS和PS/ZnSPS的性能与组成的变化规律不同,意味着二者之间存在不同的离子聚集结构或相互作用.  相似文献   

18.

In this study, the effect of temperature and mass fraction of Al2O3 and WO3 nanoparticles dispersed in deionized water and liquid paraffin was investigated on dynamic viscosity of nanofluid. The results of the TEM tests showed that the size of Al2O3 and WO3 nanoparticles was ranged from 10 to 60 nm, and the results showed that nanoparticles were semi-spherical. Also the results of DLS and zeta potential tests, respectively, exhibited the uniform size and high stability of the nanoparticles in the basefluid environment. The findings showed that adding a certain amount of nanoparticles to water and liquid paraffin increases dynamic viscosity, and in the case of various shear rates, the viscosity is constant for the water-based nanofluids, which indicates the Newtonian behavior of the nanofluid. In addition, for those prepared by liquid paraffin as a basefluid, the viscosity does not remain constant at different shear rates and at low amount of shear rate the viscosity achieves higher value, indicating non-Newtonian behavior of liquid paraffin-based nanofluids. The results showed that by increasing the temperature in liquid paraffin-based nanofluid the uniformity and linearity of the viscosity curve at various shear rates could be observed, which represents an approach for Newtonian behavior of nanofluid at higher temperatures. These results also showed that with increasing the mass fraction of nanoparticles in water and liquid paraffin, the viscosity increases at different shear rates. Finally, the correlation presented in this study shows that for nanofluid viscosity as a function of nanoparticles load and temperature, the deviation of correlated data from experimental values is less than 10%.

  相似文献   

19.
双酚A型聚碳酸酯(PC)在高温加工过程中容易降解, 表现为黄变和黏度逐渐下降. 本文研究结果表明, 某些PC在N2气保护下有可能出现熔体增黏效应. 借助动态流变实验研究了7种PC的熔体增黏行为, 利用高效液相色谱(HPLC)和核磁共振波谱(NMR)分析了分子结构演变规律. 结果表明, 与光气法PC熔体黏度先下降后缓慢上升不同, 酯交换法PC熔体随着检测时间的延长黏度上升, 熔体强度增大, 出现更严重的剪切变稀现象. 分子结构表征证实, 在无氧条件下PC分子链发生了支化或交联反应, 形成了高分子量凝胶物. 酯交换法PC在高温下的凝胶化速度比光气法PC高, 导致低频区出现较高的剪切黏度. 我们推测, 端羟基含量可能是造成不同PC凝胶化差异的主要因素.  相似文献   

20.
The effect of associative polymers on the structure and rheological behavior of colloidal suspensions is discussed. Adding associative polymer is known to increase the viscosity of the suspensions. At high shear rates the increase is close to what could be expected on the basis of the hydrodynamic effects of the added polymer. At low shear rates the viscosity increases much more. Small-angle light scattering (SALS) during flow is used here to investigate the underlying structural mechanisms. The SALS patterns indicate that the associative polymer changes the particulate structure: characteristic butterfly patterns appear even at relatively low particle volume fractions. They are not present in the suspensions without associative polymer. The patterns indicate that fluctuations in particle concentration are more pronounced in the flow direction than in the vorticity direction and that anisotropic particulate structures with an orientation along the vorticity direction develop. The evolution of their characteristic length scale during flow has been followed over time. Changing the hydrophilic part of the polymer from polyacrylamide to polyacrylic acid induces stronger associative interactions. In the suspensions this results in a reduction of the relative viscosity rather than an increase. The difference in degree of associativity between the polymers also has an effect on the SALS patterns in the suspensions both at rest and during flow. The rheology as well as the SALS suggest the presence of a strong polymer network in the second system. The competition between adsorption of the associative polymer on the particles with the intermolecular associations between the polymer chains seems to be responsible for the observed differences. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号