首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.  相似文献   

2.
In this research, synthesis and characterization of the nano-graphene oxide (GO) based on the modified polyacrylic acid (PAA) have been carried out. Formation of esteric bonds between the carboxyl functional groups of the GO surface and the hydroxyl groups of PAA was confirmed by FTIR spectroscopy. The result of this synthesis is covalent modification of graphene oxide during the polymerization process and this modification has caused improvement and change in some properties of graphene oxide including solubility of nanocomposite. Additionally, structure and stability of composite were studied by SEM, XRD and TGA.  相似文献   

3.
Spin-polarized periodic density functional theory was performed to characterize H2S adsorption and dissociation on graphene oxides (GO) surface. The comprehensive reaction network of H2S oxidation with epoxy and hydroxyl groups of GO was discussed. It is shown that the reduction reaction is mainly governed by epoxide ring opening and hydroxyl hydrogenation which is initiated by H transfer from H2S or its derivatives. Furthermore, the presence of another OH group at the opposite side relative to the adsorbed H2S activates the oxygen group to facilitate epoxide ring opening and hydroxyl hydrogenation. For H2S interaction with -O and -OH groups adsorption on each side of graphene, the pathway is a favorable reaction path by the introduction of intermediate states, the predicted energy barriers are 3.2 and 10.4 kcal/mol, respectively, the second H transfer is the rate-determining step in the whole reaction process. In addition, our calculations suggest that both epoxy and hydroxyl groups can enhance the binding of S to the C-C bonds and the effect of hydroxyl group is more local than that of the epoxy.  相似文献   

4.
The surface of silica was modified by mercaptopropyl, chloropropyl, aminopropyl, and methacryloxypropyl groups by the treatment of silica with the corresponding silane coupling agents, and the effects of functional groups on the surface on the polymerization of vinyl monomers initiated by benzoyl peroxide or 2,2-azobisisobutyronitrile were investigated. Although the rate of the polymerization of vinyl monomers in the presence of silica was almost equal to that in the absence of silica, a part of polymer formed was grafted onto silica surface. The polymerization was considerably retarded in the presence of these functionalized silicas and the corresponding polymers were effectively grafted onto the surface. The molecular weight of ungrafted polymer formed in the presence of the functionalized silica was lower than that formed in the presence of unmodified silica. This indicates that the chain transfer reaction of growing polymer radical to functionalized silica surface forms radicals on the surface, which then couples with growing polymer radical and/or reinitiates the polymerization to give rise to the grafting of polymers onto the surface. In the case of silica having methacryloxypropyl groups, the grafting based on the copolymerization of vinyl monomer with the surface methacryloxypropyl groups was considered to successfully proceed.  相似文献   

5.
Nonisothermal and isothermal decomposition of poly(ethylene oxide) (PEO) loaded with different concentrations of pristine graphene (PG) and graphene oxide (GO) nanoplatelets were investigated using reactive molecular dynamics simulation. The onset of nonisothermal decomposition of the PG‐loaded PEO system was the highest among all systems, suggesting that introducing PG to the polymer improves its thermal stability (an effect that increases with an increase in the PG concentration). At low concentration, introducing GO to the polymer brings about a deterioration of the thermal stability of the polymer consistent with experimental findings. On average, the activation energy for the isothermal decomposition of PG‐loaded PEO system increases by 60% over that of the neat PEO system, while it decreases by 40% for the GO‐loaded PEO system. A time‐dependent analysis of the through‐thickness decomposition profile of the above systems reveals that the polymer confined between the PG sheets exhibit a higher thermal stability compared to the bulk polymer. However, an opposite effect is observed with the polymer confined between the GO sheets. The latter observation is attributed to accelerated polymer chain scission in confined regions due to the ejection of reactive hydroxyl radicals from the GO surface during the early stages of thermal decomposition. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1026–1035  相似文献   

6.
Density functional calculations of optimized geometries for the migration of single hydrogen and hydroxyl groups on graphene are performed. It is shown that the migration energy barrier for the hydroxyl group is three times larger than for hydrogen. The crucial role of supercell size for the values of the migration barriers is discussed. The paired migration of hydrogen and hydroxyl groups has also been examined. It could be concluded that hydroxyl group based magnetism is rather stable in contrast with unstable hydrogen based magnetism of functionalized graphene. The role of water in the migration of hydroxyl groups is also discussed, with the results of the calculations predicting that the presence of water weakens the covalent bonds and makes these groups more fluid. Increasing the number of water molecules associated with hydroxyl groups provides an increase of the migration energy.  相似文献   

7.
In this study, the graphene oxide/poly(N-isopropylacrylamide) nanocomposite modified with 2-mercaptoethanol (GO/MPNIPAM) was synthesized in three stages. N-Isopropylacrylamide polymerization was firstly performed in the presence of azobisisobutyronitrile as an initiator, which was discovered by Homer, and 2-mercaptoethanol as a modifier. Then, the graphene oxide/modified polymer nanocomposite was synthesized by the covalent interactions between carboxylic acids of the graphene oxide and hydroxyl groups of the modified polymer during the esterification reaction. The GO/MPNIPAM nanocomposite includes some percentage of the polymer that improves solubility and stability of the GO sheets in physiological applications; due to the interaction between the MPNIPAM and the modified GO polymer, a bridge-like connection is formed between the GO sheets and the process that leads to remove a large number of hydrophilic groups on the GO nanocomposite and therefore, the GO/MPNIPAM is well dissolved in organic solvents. This property is beneficial for anti-cancer drug delivery as well as π–π interactions between the nanocomposite and aromatic drugs. The nanocomposite is not a toxic material for human body at all and has high capacity for drug delivery. Structure and morphology of the nanocomposite were studied by FTIR, SEM, XRD, UV, TGA and Raman analysis. The analysis done by X-ray diffraction pattern confirmed the presence of graphene oxide in nanocomposites and improved crystalline polymer in nanocomposites.  相似文献   

8.
The determination of double bonds in PVC is achieved with an increased accuracy in comparison with earlier methods by the addition of iodine monochloride (Wijs reaction) to PVC coupled with x-ray fluorescence analysis to determine the iodine content of the polymer. The number of double bonds per unit weight of polymer increases on increasing the polymerization temperature and is proportional to the number of polymer molecules. It is not affected, however, by the presence of the chain transfer agent tetrahydrofuran (THF). At the technically important polymerization temperatures of 30 to 80°C and in the absence of the chain transfer agent, 0.9 double bonds per polymer molecule are found. The number of double bonds per polymer molecule is lowered using the chain transfer agent THF. These results support the theory that the chain transfer to monomer and possibly the termination reaction are coupled with the formation of terminal double bonds. Contributions by internal double bonds formed by dehydrochlorination of the polymer during polymerization are excluded by investigating the Clθ content of the water phase in the oxygen-free VC suspension polymerization. No hydrogen chloride is formed. In IR spectra of PVC, the stretching vibration of the double bonds is detected at 1667 cm?1 by the correlation of the double bond contents and the intensities of the absorption bands. The stretching vibration at 1667 cm?1is in accordance with those of model compounds with a 1-chloro-2-alkene structure.  相似文献   

9.
用示差扫描分析仪(DSC)研究了氧化石墨(GO)对N,N,N',N'-四缩水甘油基-4,4'-二氨基二苯基甲烷环氧树脂(TGDDM)/4,4'-二氨基二苯基砜(DDS)体系的等温固化反应的影响,用X射线光电子能谱仪(XPS)和傅里叶变换红外光谱仪(FTIR)研究了GO上存在的官能团及其对TGDDM/DDS体系固化行为的影响,用热失重分析仪(TGA)研究了天然石墨和GO的热力学稳定性.XPS、FTIR和TGA结果表明,GO上存在的大量羟基、羧基、环氧基等官能团能够影响环氧树脂的固化行为.DSC研究发现,环氧树脂/氧化石墨纳米复合物的固化反应属于自催化类型,随着GO含量的增加,达到最大反应速率的时间不断减小,初始反应速率不断增大,这说明GO对环氧树脂的固化反应有促进作用.Kamal模型计算得到的结果表明,随着GO含量的增加自催化反应初期阶段表观活化能E1先减小再增大,而自催化反应结束后表观活化能E2略微减小.经Kamal模型扩散控制函数修正后,整个固化过程中拟合得到的结果与实验数据相当吻合.以上结果说明,少量的GO对TGDDM/DDS体系的固化反应起着催化作用.  相似文献   

10.
张凯  黄春保  沈慧芳  陈焕钦 《应用化学》2010,27(10):1144-1148
采用乳液聚合法将甲基丙烯酸甲酯(MMA)接枝到氯丁胶乳上,红外光谱和核磁共振氢谱证实了接枝产物的生成。 研究了反应温度、乳化剂浓度、引发剂浓度和单体浓度对表观聚合速率的影响。 结果表明,当反应温度为50 ℃,引发剂叔丁基过氧化氢 四乙烯五胺(t-BHP/TEPA)用量为氯丁胶乳干重的0.5%,单体/聚合物质量比m(M)∶m(P)=3∶5,乳化剂十二烷基连苯醚二磺酸钠(DSB)用量为单体总质量1%时,单体转化率和接枝效率分别为99.1%和54.9%。 聚合反应动力学关系式为:Rp=Kc(E)0.15c(I)0.30c(MMA)1.41,式中,K为常数,在40~55 ℃范围内,聚合反应的表观活化能Ea=60.2 kJ/mol。 接枝聚合基本符合自由基反应机理。  相似文献   

11.
Graphene oxide (GO) is effective in catalyzing a wide variety of organic reactions and a few types of polymerization reactions. No radical chain polymerizations catalyzed by GO have been reported. In this article, we probe the catalytic role and acceleration effect of GO for self‐initiated radical chain polymerizations of acrylic acid (AA) in the presence of GO and a pre‐existing polymer, poly(N‐vinylpyrrolidone) (PVP), from a calorimetric perspective. Gelation experiments and DSC studies show that GO can function as a catalyst to accelerate the radical chain polymerization of AA. Isothermal polymerization kinetic data shows that the addition of GO diminishes the induction periods and increases the polymerization rates, as indicated by the much enhanced overall kinetic rate constants and lowered activation energies. The catalytic effect of GO for the polymerization of AA is attributed to the acidity of GO and the hydrogen bonding interactions between GO and monomer molecules and/or polymers.

  相似文献   


12.
The interactions of nitrogen oxides NO(x) (x = 1,2,3) and N(2)O(4) with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO(2) and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH???O (N) between -OH and nitrogen oxides and new weak covalent bonds C???N and C???O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO(2) and NO(3) with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N(2)O(4) adsorptions on GO. The calculated results show good agreement with experimental observations.  相似文献   

13.
Abstract

The polymerization of lactones provides a facile route to polyesters that is unimpeded by the long reaction cycles and elevated temperatures inherent in the condensation of hydroxyl and acid functional groups. Depending on the structure of the lactone monomer, catalyst/initiator systems are known which allow preparation of extremely high molecular weight polyesters of low polydispersity. In addition to obtaining high molecular weight polyesters in relatively short reaction cycles and at moderate temperature, lactone polymerization allows careful control of polymer end groups through proper selection of the initiating species. The type of end group plays an important role in both the thermal stability and hydrolytic stability of the resulting polyester. This study reviews and updates the field of lactone polymerization with specific emphasis on the chemistry and Theological  相似文献   

14.
《Analytical letters》2012,45(6):969-981
A novel acrylamide (AA) molecularly imprinted polymer was synthesized by atom transfer radical polymerization (ATRP) on graphite oxide (GO) particles. Propionamide (PAM) was used as a dummy template molecule, hydroxy ethyl acrylate (HEA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a crosslinking agent, and acetonitrile as both solvent and dispersion medium. Scanning electron microscopy (SEM) images and infrared spectroscopy (IR) confirmed that the molecularly imprinted polymers (MIP) were successfully grafted onto the surface of the GO particles. The corresponding adsorption kinetic curves and adsorption isotherms showed that the AA adsorption reached equilibrium after 5 h, with large amounts of AA being adsorped in the first 100 min. The maximum AA adsorption capacity was 123.48 µmol g?1 according to Scatchard analysis, which indicated that the MIP possesses good AA adsorption capacity. This MIP-GO material was used to selectively determine AA in fried food samples.  相似文献   

15.
The kinetics of chain propagation and interchain exchange reactions in the anionic polymerization of 2-hydroxyethyl acrylate initiated by lithium tert-butylate were compared. The kinetic parameters of the reactions under consideration were determined. An abnormal ratio between the activation energies of chain propagation and interchain exchange was revealed and explained by the involvement of hydroxyl groups in changes of reactivities of double bonds and ester groups of the initial monomer, the resulting polymer, and the growing active centers of polymerization. The effect of self-inhibition of polymerization was observed and attributed to the fact that ethylene glycol and its alkoxy alcoholate occurring as H-bonded cyclic complexes form at the beginning of the reaction.  相似文献   

16.
Methyl-tert-butyl fumarate (MtBF) was found to homopolymerize in bulk in the presence of 2,2′-azobisisobutyronitrile (AIBN) at 50–80°C to give a high molecular weight polymer. From IR, 1H-NMR and 13C-NMR spectra, this polymer was assumed to consist of alternating methoxycarbonylmethylene and tert-butoxycarbonylmethylene units, indicating that it was produced from MtBF through an ordinary vinylene polymerization mechanism. Consideration of a molecular model suggested that this polymer had a less flexible rodlike structure with the diameter of about 13.5 Å. The thermal properties of this polymer were also evaluated. Moreover, the bulk polymerization of MtBF initiated by AIBN was investigated kinetically at 60°C. The overall activation energy for this polymerization was determined to be 83.5 kJ/mol. The reaction orders with respect to the monomer and initiator concentrations were obtained as 2.0 and 0.33, respectively.  相似文献   

17.
An NMR study on the reaction products of the ionic polymerization of 1,2-butylene oxide has been carried out. Polymers prepared via a cationic mechanism by using a trityl salt as the initiator are built up of repeat monomer units, and the propagation reaction follows Bernoullian statistics. Polymers prepared via an anionic mechanism with the use of sodium metal as initiator, on the other hand, are not made up of repeat monomer units, and the propagation reaction follows a first-order Markov statistics. In the cationic polymers the mean chemical shifts of the triads and tetrads move upfield on replacing m dyads by r dyads; however, the pentads move downfield on changing m by r. In the anionic polymers the mean chemical shifts for the triads and tetrads of the ethyl group along with the pentads of the methine protons move upfield whereas tetrads associated with the remaining methylenes move downfield on replacing m dyads by r dyads as well as on replacing 0-C6H4CI2 by CCU or DMSO-de as the solvent for recording the spectrum. The anionic polymer M-b, which is rich in double bonds and hydroxyl groups, has relatively lower values for the geminal couplings JAB and the vicinal couplings JAX.and JBX as compared to those obtained with polymer M-a, which has practically no double bonds and very few (if any) hydroxyl groups. The appearance of the methylene protons in polymer M-b as well as the coupling constants JAB., JAX, and JBxvary on changing the solvent from O-C6H4Cl2 to CCh or DMSO-de.  相似文献   

18.
In this work, we report the preparation of graphene nanoplatelet which covalently functionalized with PMMA chains by introduction of vinyl groups onto graphene surface through simple esterification reaction between hydroxyl groups of graphite oxide and methacrylic anhydride. The synthesis is followed by in-situ polymerization with MMA monomers. The structural properties were characterized with X-ray diffraction spectroscopy (XRD) and scanning electronic microscopy (SEM) that showed the crystalline graphite is converted to individual layers during the synthesis steps. The grafting of PMMA chains was monitored with IR spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The TGA results revealed 40% wt of PMMA chains chemically grafted onto graphene surface. Significant increase in glass transition temperature (Tg) and existence of polymer chains in two positions (physically absorbed and chemically grafting onto graphite surface) are indicated by differential scanning calorimetric (DSC) analysis.  相似文献   

19.
The solid-state 1,3,5-trithiane polymerization initiated by UV-irradiation was studied at various irradiation times and various polymerization temperatures. The conversion of monomer to polymer reaches limiting values (at longest) in about 30 min of reaction. The apparent activation energy of this process is somewhat higher than in the chemically initiated polymerization. Generated by UV, active centers, which initiate the polymerization, are stable. On the basis of X-ray diffraction studies it was found that the prepared polythiomethylene has a hexagonal structure and high degree of crystallinity. In the polymer investigated, a new additional crystal phase is formed, which is not stable.  相似文献   

20.
A radical polymerization reaction of acrolein is reported in this article. The free radical initiator which can effectively promote the free radical polymerization of acrolein is screened out. The optimal conditions of the reaction are investigated and the yield could be up to 93.67%, in which the ratio of initiator to monomer is 1:50, monomer concentration is 7.5 mol L?1, reaction temperature is 50 °C, and the reaction time is 6 h. The structure characterizations of the obtained polymers are performed using hydrogen nuclear magnetic resonance spectroscopy, fouriertransform infrared spectroscopy, and matrix‐assisted laser desorption ionization time of fligh mass spectroscopy. The results show that the structure of the polymer contains fragments generated by decomposition of the initiator, aldehyde groups, and vinyl groups. The reaction mechanism of acrolein polymerization in the presence of free radical initiator is proposed. Thus, a novel method for the preparation of polyacrolein via radical polymerization is provided in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号