首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PPEKK/PEI共混物的相容性及拉伸性能   总被引:3,自引:0,他引:3  
作为相容体系 ,聚芳醚酮与聚醚酰亚胺 (PEI)共混物体系的研究受到了研究者的重视[1~ 4] .由于现在已商品化的聚芳醚酮基本上都是半结晶型聚合物 ,所以有有关无定型聚芳醚酮与聚醚酰亚胺共混物的研究鲜见报道 .含二氮杂萘酮结构聚芳醚酮酮 (PPEKK)是一种新型耐高温聚合物 ,相比于已经商品化的各种聚芳醚酮 ,PPEKK除具有优异的综合性能外 ,它最大的特点表现在以下两方面 ,PPEKK耐热性突出 ,玻璃化转变温度 (Tg)为 2 4 5℃左右 ,远高于各种商品化的聚芳醚酮 ;PPEKK为无定型聚合物 ,易溶于多种有机极性溶剂 ,大大的扩…  相似文献   

2.
Spherulite ring-band patterns and growth regimes in neat poly(?-caprolactone) (PCL) and its miscible blends were analyzed using polarized-light optical microscopy and differential scanning calorimetry (DSC). Spherulite growth in thin-film forms and transformation of spherulite patterns in different regimes were investigated by comparing neat PCL with its miscible blends. Three miscible diluents in PCL were probed: poly(p-vinyl phenol) (PVPh), poly(benzyl methacrylate) (PBzMA), and poly(phenyl methacrylate) (PPhMA), which represent strong H-bonding and weak polar interactions, respectively. Blending of PCL with miscible amorphous polymers changes the spherulite patterns significantly. The effect of different diluent polymers varies. Inclusion of different amorphous polymers in PCL leads to different extents of suppression in growth rates and induces different spherulitic patterns. The H-bonding interaction leads to that the PCL/PVPh blend shows dendritic crystals and no ring bands. Although PPhMA differs from PBZMA only by a methylene in the chemical structure of repeat unit, the coil-like textures of ring bands in the PCL/PPhMA blend are widely different from the zig-zag ring bands in the PCL/PBzMA blend. Regime plots show that the growth of neat PCL behaves quite differently from any of its blends with amorphous polymers (PVPh, PPhMA, or PBzMA). Regime plots for PCL/PBzMA blend also differ from those for the PCL/PPhMA blend, which correlates with the crystal patterns seen in these two blend systems.  相似文献   

3.
The influence of miscibility on the transport properties of polymer electrolyte blends composed of a proton conductor and an insulator was investigated. The proton‐conductive component in the blends was sulfonated poly(ether ketone ketone) (SPEKK), while the nonconductive component was either poly(ether imide) (PEI) or poly(ether sulfone) (PES). The phase behavior of PEI‐SPEKK blends was strongly influenced by the sulfonation level of the SPEKK. At low sulfonation levels (ion‐exchange capacity (IEC) = 0.8 meq/g), the blends were miscible, while at a slightly higher level (IEC = 1.1 meq/g), they were only partially miscible and for IEC ≥ 1.4 meq/g they were effectively immiscible over the entire composition range. The PES‐SPEKK blends were miscible over the entire range of SPEKK IEC considered in this study (0.8–2.2 meq/g). At high IEC (2.2 meq/g) and at low mass fractions of SPEKK (<0.5), the miscible blends (PES‐SPEKK) had higher proton conductivities and methanol permeabilities than the immiscible ones (PEI‐SPEKK). The opposite relationship was observed for high mass fractions of SPEKK (>0.5). This behavior was explained by the differences in morphology between these two blend systems. At low IEC of SPEKK (0.8 meq/g), where both PEI‐SPEKK and PES‐SPEKK blend systems exhibited miscibility, the transport properties were not significantly different. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2253–2266, 2006  相似文献   

4.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

5.
Conjugated polyanilines bearing long alkyl side chains (dodecyl PANi-12 and octadecyl PANi-18) were prepared for the purpose of obtaining well-mixed conducting polymer blends with insulating flexible polymers. The miscibility of the polyanilines and ethylene-co-vinyl acetate copolymers (EV A20 with 20 wt % of vinyl acetate and EV A70 with 70 wt %) was significantly improved by long alkyl chains of the same hydrocarbon moieties as the ethylene segments in the matrix EV A, as demonstrated by microscopic observation. PANi-18/EV A20 blends exhibit a lower critical phase separation temperature (LCST). In addition, the EV A crystallinity and the side-chain crystallinity in the miscible blends were depressed, as shown by thermal analysis and x-ray scattering. The comparison of three designed blend systems indicates that the miscibility of the polymers is determined by the hydrophobic interaction between the hydrocarbon units in the both components and by the hydrogen bonding. The solvatochromic phenomena for the blends at low miscible PANi compositions was detected by UV-visible spectroscopy. The threshold conductivities exhibit sensitivity to the morphological structure of the polymeric blends, and was lowered by improved homogenous dispersion of the conducting phase. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A N-Methylpyrrolidone (NMP) solution of polymic acid having internal acetylene units in the backbone was mixed with a NMP solution of oligomeric amic acid end-capped with biphenylenes to afford a miscible solution. The viscosity of polymic acid solution lowered considerably by the addition of oligomers, which could lead to improved processability. The amic acid mixture was thermally or chemically cyclized to give a blend of internal-reactive polymide and end-reactive oligoimide. Films of imide blends were easily prepared by casting solutions of the amic acid blends followed by imidization. The imide blends were thermally cured at 400°C for 10 min to give cross-linked polyimides that showed excellent thermal stability as confirmed by DSC, TGA, TMA, and viscoelastic analyses of the cured films. A selective co-crosslinking reaction between biphenylene in the oligomide and acetylene in the polyimide to give phenanthrene linkage is supposed to be the cause of the high thermal stability.  相似文献   

7.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

8.
<正> 近年来,有关高性能树脂聚酰亚胺共混物的研究日益引起人们的关注。已经发现许多种分子结构不同的聚酰亚胺之间,聚酰亚胺与聚苯并咪唑,或聚醚醚酮能形成完全相容的共混体系,从而扩大了高性能树脂聚酰亚胺的应用范围。 酚酞型聚醚醚酮(PEK-C)是由我所研究开发出的一种新型的聚醚醚酮类高性能树脂,它具有良好的可溶性,优异的机械强度和加工流动性,已广泛应用于结构材料及复合材料的制备。为进一步扩大该树脂的应用范围,本实验室在PEK-C共混物的研究做了大量的工作。本工作研究了聚醚酰亚胺(PEI)/PEK-C共混体系的相容性。PEI和PEK-C的分子结构如下:  相似文献   

9.
The most common way to influence the liquid-liquid phase behaviour in partially miscible (co-)polymer blends is changing the blending temperature. Since most extruders can handle pressures, up to 300 bar, pressure may also be used to influence the miscibility of polymers during blending. We have developed equipment and an experimental procedure to study the pressure dependence of the liquid-liquid demixing behaviour of high-viscous polymer blends under equilibrium conditions. Small amounts (1–4 grams) of specially made polymers are blended in the ‘DSM MINI EXTRUDER’. After a chosen mixing time, a small portion of the blend is injected into a small capillary tube and kept at the blending temperature. The phase behaviour of the blends as a function of temperature and pressure is studied via laser light scattering (at a scattering angle of 90°) in a specially made 400 bar/250°C window autoclave, where the capillary cell is placed in a high temperature grade silicon oil.  相似文献   

10.
New synthetic methodology was developed as part of an effort to increase the processibility of high Tg polyimide homo and copolymers, suitable as matrix resins and structural adhesives. Molecular weight and end group control together with solution imidization techniques were successfully employed to convert a variety of poly(amic acid) intermediates to fully cyclized polyimides. The solution imidization was conducted in N-methylpyrrolidone (NMP) with o-dichlorobenzene used as the azeotroping agent at 165–190°C. This technique has produced products which are more soluble than polyimides prepared previously by bulk thermal cyclization of poly(amic acids) at temperature of 300°C. They are also more stable than “chemically” imidized materials. In addition, incorporation of the monofunctional reagent phthalic anhydride provides nonreactive phthalimide end groups and controlled molecular weight. This latter feature significantly further improved the melt and solution processibility of the resulting polyimides. In this study thermoplastic, fully cyclized polyimides of 10 000, 20 000, and 30 000 M̄n were prepared which displayed glass transition temperatures ranging from 260–353°C, with the highest Tg observed with phthalimide capped polyimide systems derived from 6F-dianhydride and p-phenylene diamine. Tough, transparent films were prepared from polymers of 20 000 and 30 000 g/mol by casting from NMP solution or by compression molding at 50–70°C above the glass transition temperature. For purposes of molecular weight assessment, t-butyl phthalic anhydride was used as the end blocker. This permitted 400 M-Hertz proton NMR to be used for assessing the concentration of end groups. Comparison of the 18 aliphatic protons at the end of the chain allowed M̄n values to be determined, which agreed well with theory. A series of poly(arylene ether ketone)/aromatic polyimide blends were investigated to determine the influence of structural variation and composition on miscibility. As an extension to the PEEKTM/UltemTM blend system, which has been reported to be miscible over all proportions, this study examined how structural variations in both the poly(arylene ether ether ketone) and the polyimide portions affect miscibility. In particular, replacement of the hydroquinone fraction in PEEKTM with bisphenol A or sulfonyl diphenol produced an amorphous polymer which was no longer miscible with UltemTM. Polyimide structures modified by employing 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-[1,4-phenylene-bis-(1-methyl ethylidene)] bisaniline (Bis P) diamine to obtain higher glass transition temperatures were also investigated. This system afforded homogeneous blends with PEEKTM when the (Bis P) diamine was utilized in the synthesis of the polyimide. Furthermore, up to 50 mole percent of hexafluoro-bis-dianhydride (6FDA) could be substituted for BTDA without loss of miscibility. However, when the more polar 3,3′-diaminodiphenylsulfone diamine was employed, immiscible blends resulted. An additional important variant has been to incorporate polyimide siloxane segmented copolymers into the PEEKTM blend system. The polyimide segment can be designed to be miscible whereas the siloxane portion is homogeneously dispersed into a second phase which, in fact, enriches the surface behavior quite dramatically in siloxane content. The latter could be of some importance in allowing for atomic oxygen resistance and possibly improved flame resistance behavior.  相似文献   

11.
The permeation rates of He, H2, CO2, N2 and O2, are reported for a series of miscible polysulfone-polyimide (PSF-PI) blend membranes synthesized in our laboratory. For gases which do not interact with the polymer matrix (such as He, H2, N2 and O2), gas permeabilities in the miscible blends vary monotonically between those of the pure polymers and can be described by simple mixture equations. In the case of CO2, which interacts with PI, blend permeabilities decrease somewhat, compared to pure PSF and PI. This, however, is accompanied by a two-fold improvement in the critical pressures of plasticization vs. polyimide. Permselectivities of CO2/N2 and H2/CO2 in the blends deviate from mixing theory predictions, in contrast to selectivities of gas pairs which do not interact with PI. Differential scanning calorimetry measurements of pure and PSF/PI blend membranes show one unique glass transition temperature, supporting the miscible character of the PSF/PI mixture. Optical micrographs of the blend membranes clearly indicate perfect homogenization and no phase separation. Frequency shifts and absorption intensity changes in the FTIR spectra of the blends, as compared with those of the pure polymers, indicate mixing at the molecular level. This compatibility in mixing PSF and PI, results essentially in a new blend polymer material, suitable for the preparation of gas separation membranes. Such membranes combine satisfactory gas permeation properties, reduced cost, advanced resistance to harsh chemical and temperature environments, and improved tolerance to plasticizing gases.  相似文献   

12.
The effect of pH on the complex formation between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) has been studied in aqueous solutions by turbidimetric and fluorescent methods. It was shown that the formation of insoluble interpolymer complexes is observed below a certain critical pH of complexation (pH(crit1)). The formation of hydrophilic interpolymer associates is possible above pH(crit1) and below a certain pH(crit2). The effects of polymer concentrations in solution and PEO molecular weight as well as inorganic salt addition on these critical pH values were studied. The polymeric films based on blends of PAA and PEO were prepared by casting from aqueous solutions with different pHs. These films were characterized by light transmittance measurements and differential scanning calorimetry. The existence of the pH value above which the polymers form an immiscible blend was demonstrated. The transitions between the interpolymer complex, miscible blend, and immiscible blend caused by pH changes are discussed. The recommendations for preparation of homogeneous miscible films based on compositions of poly(carboxylic acids) and various nonionic water-soluble polymers are presented.  相似文献   

13.
This paper summarises the currently available literature concerned with measurement of free volume in miscible, amorphous polymer blends using positron annihilation lifetime spectroscopy (PALS) which probes excluded volume at the angstrom level. Previously reported data is compared with new data from a range of different blend systems. Miscible blends tend to show a negative deviation of free volume size (and to a lesser degree free volume fraction) on mixing due to the intimacy of packing of the blend component macromolecules. A largely immiscible system is also reported and shows a different behaviour (positive deviation of free volume size) and this is ascribed to additional free volume at the interface.  相似文献   

14.
聚甲基丙烯酸甲酯与聚醋酸乙烯酯共混的红外光谱研究   总被引:2,自引:0,他引:2  
用红外光谱(FTIR)研究了聚甲基丙烯酸甲酯(PMMA)与聚醋酸乙烯酯(PVAc)共混体系相容性,在160℃以上共混体系发生相分离;分相体系与非分相体系的FTIR谱明显不同;共混体系的FTIR谱不能从两统组分红外光谱简单加和得到;结果表明大分子构象发生了变化,PMMA/PVAc体系相容可能是大分子构象熵变所致。  相似文献   

15.
The sorption and permeation of carbon dioxide gas in miscible blends of poly(phenylene oxide) and polystyrene was measured as a function of pressure at 35°C over the entire range of blend compositions. The results are well described quantitatively by the dual sorption and dual mobility models developed for glassy polymers. The Henry's law sorption parameter was analyzed by the Flory—Huggins theory of ternary mixtures to obtain an interaction parameter which quantifies the exothermic heat of mixing for this blend system. The Langmuir capacity term was successfully related to the unrelaxed volume of the glassy blends. Transport properties of the blends were found to lie well below predictions based on simple additivity which is consistent with the strong interaction between the two polymers.  相似文献   

16.
Two ternary miscible fluoro-polyimide blends have been identified. They are 6FDA-3,3′-6F-diamine/6FDA-4,4′- F - diamine/BTDA - 4,4′ - 6FDA blend and 6FDA - 3,3′ - 6F - diamine/6FDA - 4,4′ - 6F - diamine/ODPA - PMDA - 4,4′-6F-diamine blend (6FDA is 2,2′-bis(3,4′-dicarboxy- phenyl)hexafluoro propane dianhydride, 6F-diamine is 2,2′-bis(3-aminophenyl) hexafluoro propane). Their miscibility probably arises from the fact that their diamine parts have hexafluoro isopropylidene groups, their dianhydride parts have similar bond angle, space, rigidity and length. Several 6FDA-polyimides and PCTG 5445 (glycol-modified polycyclohexanedimethanolterephthalate) form- ing miscible blends have also been discovered. These surprising results suggest that hexafluoro-isopropylidene-group containing polyimides are quite intermolecular active and the 1,4-cyclohexane dimethanol component in PCTG 5445 may also offer unique miscibility capability. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
A review of work which has been performed on high temperature polymer blends is presented. The discussion is divided into miscible and immiscible blends. It is pointed out that one problem with miscible polymer blends is that of processing in the miscible state. In the case of immiscible blends, particularly ones containing liquid crystal polymers, the issue of adhesion of the two phases is discussed. Finally, the need for better theoretical models for predicting miscibility in polymer blends is highlighted.  相似文献   

18.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

19.
The effects of molecular orientation on the crystallization and polymorphic behaviors of syndiotactic polystyrene (sPS) and sPS/poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends were studied with wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry. The oriented amorphous films of sPS and sPS/PPO blends were crystallized under constraint at crystallization temperatures ranging from 140 to 240°C. The degree of crystallinity was lower in the cold‐crystallized oriented film than in the cold‐crystallized isotropic film. This was in contrast to the case of the cold crystallization of other polymers such as poly(ethylene terephthalate) and isotactic polystyrene, in which the molecular orientation induced crystallization and accelerated crystal growth. It was thought that the oriented mesophase was obtained in drawn films of sPS and that the crystallization of sPS was suppressed in that phase. The WAXD measurements showed that the crystal phase was more ordered in an sPS/PPO blend than in pure sPS under the same annealing conditions. The crystalline order recovered in the cold‐crystallized sPS/PPO blends in comparison with the cold‐crystallized pure sPS because of the decrease in the mesophase content. The crystal forms depended on the crystallization temperature, blend composition, and molecular orientation. Only the α′‐crystalline form was obtained in cold‐crystallized pure sPS, regardless of molecular orientation, whereas α′, α″, and β′ forms coexisted in the cold‐crystallized sPS/PPO blends prepared at higher crystallization temperatures (200–240°C). The β′‐form content was much lower in the oriented sPS/PPO blend than in the isotropic blend sample at the same temperature and composition. It was concluded that the oriented mesophase suppressed the crystallization of the stable β′ form more than that of the metastable α′ and α″ forms during the cold crystallization of sPS/PPO blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1665–1675, 2003  相似文献   

20.
By adjusting the molecular weight of the poly(l-lactic acid) (PLLA) component in poly(3-hydroxybutyrate) (PHB)/PLLA blends, we investigated the crystallization behaviors of the two components in their immiscible and miscible 50:50 blends by real time infrared (IR) spectroscopy. In the immiscible PHB/PLLA blend, the stepwise crystallization of PHB and PLLA was realized at different crystallization temperatures. PLLA crystallizes first at a higher temperature (120 degrees C). Its crystallization mechanism from the immiscible PHB/PLLA melt is not affected by the presence of the PHB component, while its crystallization rate is substantially depressed. Subsequently, in the presence of crystallized PLLA, the isothermal melt-crystallization of PHB takes place at a lower temperature (90 degrees C). It is interesting to find that there are two growth stages for PHB. At the early stage of the growth period, the Avrami exponent is 5.0, which is unusually high, while in the late stage, it is 2.5, which is very close to the reported value (n approximately 2.5) for the neat PHB system. In contrast to the stepwise crystallization of PHB and PLLA in the immiscible blends, the almost simultaneous crystallization of PHB and PLLA in the miscible 50:50 blend was observed at the same crystallization temperature (110 degrees C). Detailed dynamic analysis by IR spectroscopy has disclosed that, even in such apparently simultaneous crystallization, the crystallization of PLLA actually occurs faster than that of PHB. It has been found that, both in the immiscible and miscible blends, the crystallization dynamics of PHB are heavily affected by the presence of crystallized PLLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号