首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Positive-ion, methane-mediated chemical ionization mass spectra were measured for simple bifunctional aromatic compounds of the type m-XCH2C6H4CH2Y, where X = NH2 and N(CH3)2, and Y = OH and OCH3. Essentially only three peaks of ions, [MH]+, [MH – XH]+ and [MH – YH]+, have appeared for each compound. Since the two functional groups XCH2– and YCH2– do not interact with each other after protonation or after fragmentation, they are assumed to be protonated and to undergo fragmentations independently. The relative protonation susceptibility and fraction of fragmenting [MH]+ can be estimated for each functional group in these compounds. A semi-quantitative interpretation of the observed spectra is presented.  相似文献   

2.
The positive electron impact (EI) and isobutane chemical ionization (CI) mass spectra of six nitramine nitrates were studied with the aid of some accurate mass measurements. In the EI spectra, β fission relative to both the nitramine and nitrate ester is important. In the CI spectra a major ion occurs at [MH – 45]+ and was found to be mainly due to [M + 2H ? NO2]+. All of the compounds except N-(2 hydroxyethyl)-N-(2′,4′,6′-trinitrophenyl)nitramine nitrate gave an [MH]+ ion. The [MH – 45]+ ion in the isobutane CI mass spectra of tetryl is also due to [M + 2H ? NO2]+.  相似文献   

3.
The peak intensity ratios of [M]+. vs. [MH]+ were measured in the fast atom bombardment (FAB) mass spectra of readily available test compounds with 3-nitrobenzyl alcohol as the matrix. For simple aromatic amines, the ratio increases as the ionization energy of the substrate decreases. 4-Substituted benzophenones showed preferential formation of [MH]+ ions, regardless of the nature of the substituents. This is probably due to the fact that the benzophenoes have carbonyl groups which can form hydrogen bonds with the matrix molecule. The peak intensity ratio is roughly proportional to the Hammett σ+. Among 4-substituted biphenyls, both bromo and chloro substituents afforded abnormally high peak intensity ratios. The effects of the substituents in these compounds are discussed semi-quantitatively in terms of the Hammett correlation and the hard and soft acids and bases principle. The mechanism of ion formation in FAB and chemical ionization (CI) ion sources appeared to be different because some of the compounds studied showed an intense [M]+. peak with a relatively weak [MH]+ peak in FAB spectra but exhibited a strong [MH]+ peak in ordinary CI spectra.  相似文献   

4.
A study was carried out on the fragmentation of 12 protonated O,O-dimethyl O-aryl phosphorothionates by tandem quadrupole mass spectrometry. Some of the studied compounds are used in agriculture as pesticides. Energy-resolved and pressure-resolved experiments were performed on the [M + H]+ ions to investigate the dissociation behavior of the ions with various amounts of internal energy. On collisionally activated dissociation, the [M + H]+ ions decompose to yield the [M + H ? CH3OH]+, (CH3O)2PS+ (m/z 125), and (CH3O)2PO+ (m/z 109) ions as major fragments. The ions [M + H ? CH3OH]+ and (CH3O)2PS+ probably arise from the [M + H]+ ions of the O,O-dimethyl O-aryl phosphorothionates with the proton on the sulfur or on the oxygen of the phenoxy group. The origin of the hydroxy proton of the methanol fragment was in many cases, surprisingly, the phenyl group and not the reagent gas. This was confirmed by using deuterated isobutane, C4D10, as reagent gas in Cl. The fragment ions (CH3O)2PO+ and [ZPhS]+ are the results of thiono-thiolo rearrangement reaction. The precursor ion for the ion (CH3O)2PO+ arises from most compounds upon chemical ionization, whereas the precursor ion for the ion [ZPhS]+ arises only from a few compounds upon chemical ionization. The observed fragments imply that several sites carry the extra proton and that these sites get the proton usually upon ionization. The stability order and some characteristics of three protomers of O,O-dimethyl O-phenyl phosphorothionate were investigated by ab initio calculations at the RHF/3-21G* level of theory.  相似文献   

5.
A reduction process was found to occur in the ion source when observing the chemical ionization mass spectra of a series of trinitroaromatic compounds, using water as reagent. The [MH–30]+ ions in the CI mass spectra were due mainly to the reduction of the compounds to their corresponding amines. This was proved by using D2O as reagent: the [MH–30]+ ions were shifted to [MD–28]+ ions. The trinitroaromatic compounds investigated included 1,3,5-trinitrobenzene, 2,4,6-trinitrotoluene, 2,4,6-trinitro-m-cresol, 2,4,6-trinitroaniline (picramide) and 2,4,6-trinitrophenol (picric acid).  相似文献   

6.
The consecutive dehydration of protonated molecules [MH]+ of 1,2- and 1,3-cyclohexanediols (cis and trans isomers) by loss of two H2O molecules has been investigated. Analysis of 2H labelled compounds showed that loss of the first H2O molecule represents a simple heterolysis, i.e. a dissociation without exchange of hydrogens between O—H and C—H bonds. Subsequent elimination of the second H2O molecule in the process [MH–H2O]+→[MH–2H2O]+ followed several competing paths. The two major ones corresponded formally (with reference to an intact 6-ring skeleton) to 1,3- and 1,4-eliminations; in comparison, the alternative 1,2-elimination is only a minor route at most. At least for the 1,3-elimination, water loss from the [MH–H2O]+ ions is not direct, but is associated with skeletal rearrangement, most probably of the Wagner-Meerwein-type, effecting contraction of the 6- to a 5-membered ring.  相似文献   

7.
A highly selective and accurate method based on derivatization with dansyl chloride coupled with liquid chromatography–mass spectrometry has been developed for identification of natural pharmacologically active phenolic compounds in extracts of Lomatogonium rotatum plants (Tibetan herbal medicine) obtained by solid-phase extraction. The number of hydroxyl groups on the dansylated phenols was estimated by LC–MS–MS analysis in positive-ion mode. Dansyl derivatization of the compounds introduced basic secondary nitrogen into the phenolic core structures and this was readily ionized when acidic HPLC mobile phases were used. MS fragmentation of the derivatives generated intense protonated molecular ions of m/z [MH]+ (phenol aglycones were transformed into the corresponding free phenols by cleavage of an aglycone bond). Collision-induced dissociation of the protonated molecule generated characteristic product ions of m/z 234 and 171 corresponding to the protonated 5-(dimethylamino)naphthalene sulfoxide and 5-(dimethylamino)naphthalene moieties, respectively. Selected reaction monitoring based on the m/z [MH]+ to 234 and 171 transitions was highly specific for these phenolic compounds. Characteristic ions with m/z values of [MH – 234]+, [MH – 2 × 234]+, and [MH – 3 × 234]+ were of great importance for estimation of the presence of multihydroxyl groups on the phenolic backbone.  相似文献   

8.
A study of the electron impact and chemical ionization (H2, CH4, and iso-C4H10) mass spectra of stereoisomeric benzoin oximes and phenylhydrazones indicates that while the former can be distinguished only by their chemical ionization mass spectra the latter are readily distinguishable by both their electron impact and chemical ionization mass spectra. The electron impact mass spectra of the isomeric oximes are practically identical; however, the chemical ionization spectra show that the E isomer forms more stable [MH]+ and [MH? H2O]+ ions than the Z isomer for which both the [MH]+ and [MH? H2O]+ ions are relatively unstable. In electron impact the Z-phenylhydrazone shows a lower [M]+˙ ion abundance and more facile loss of H2O than does the E isomer. This more facile H2O loss also is observed for the [MH]+ ion of the Z isomer under chemical ionization conditions.  相似文献   

9.
By means of chemical ionization 1,3-dioxolanylium as well as 1,3-dioxanylium ions are formed in proton catalysed SNi assisted heterolysis in the gas phase. The effects of both constitution and configuration are discussed and compared with the results of analogous reactions in the condensed phase. It is shown that the unimolecular decompositions of [MH]+ ions containing two vicinal substituents, e.g. Br or OAc, are not governed by the proton affinity of the departing neutrals HBr or HOAc, respectively. The findings partially contradict the results on HX loss (X: substituent) from protonated monosubstituted compounds.  相似文献   

10.
Low energy collision induced dissociation (CID) spectra were measured by a triple stage quadrupole mass spectrometer for the [MH]+ ions of diethyl and dimethyl esters of maleic, fumaric, citraconic and mesaconic acids. A very high degree of stereospecificity was observed for the geometrically isomeric diethyl esters. The cis esters give rise to very abundant [MH? EtOH]+ and [MH? EtOH? C2H4]+ ions, while the trans isomers exhibit very abundant [MH? C2H4]+ and [MH? 2 C2H4]+ ions. The highly stereospecific processes indicate that the double bond configuration is retained in the protonated species under the conditions of the experiment.  相似文献   

11.
The H2 and CH4 chemical ionization mass spectra of a selection of substituted nitrobenzenes have been determined. It is shown that reduction of the nitro group to the amine is favoured by high source temperatures and the presence of water in the ion source. The H2 chemical ionization mass spectra are much more useful for distinguishing between isomeric compounds than the CH4 CI mass spectra because of the more extensive fragmentation. For ortho substituents bearing a labile hydrogen abundant [MH ? H2O]+ fragments are observed. When the substituent is electron-releasing both ortho and para substituted nitrobenzenes show abundant [MH? OH]+ fragment ions while meta substituted compounds show abundant loss of NO and NO2 from [MH]+. The latter fragmentation is interpreted in terms of protonation para to the substituent or ortho to the vitro function, while the first two fragmentation routes arise from protonation at the nitro group. When the substituent is electron-attracting the chemical ionization mass spectra of isomers are very similar except for the H2O loss reaction for ortho compounds.  相似文献   

12.
The H2 and CH4, chemical ionization mass spectra of the cis dicarboxylic acids, maleic and citraconic acid, show much more extensive loss of H2O from [MH]+ than the trans isomers, fumaric acid and mesaconic acid. Similarly, esters of maleic acid show a much more facile loss of ROH (R=alkyl or phenyl) from [MH]+ than do esters of fumaric acid. Similar differences are observed in the chemical ionization mass spectra of the isomeric phthalic and isophthalic acids and derivatives, where the ortho isomers show more extensive fragmentation of [MH]+ than the meta isomers. The facile fragmentation of [MH]+ for the cis and ortho isomers is attributed to ROH elimination involving interaction between the two carboxylate functions and forming the stable cyclic anhydride structure for the fragment ion. By contrast ROH elimination from [MH]+ for the trans and metu isomers requires a symmetry-forbidden [1,3]-H migration in the carboxyl protonated species and cannot lead to the cyclic anhydride structure. The chemical ionization mass spectra of cis and trans cyclohexane-1,2-dicarboxylic acids are essentially identical and show extensive fragmentation of the [IMH]+ ion. Experiments using deuterium labelling show extensive carboxyl group interactions for both isomers. The chemical ionization mass spectra of maleanilic and phthalanilic acids and of the related anhydrides and imides also are reported, as are the electron impact mass spectra of diphenyl maleate, diphenyl fumarate, diphenyl phthalate, maleanilic acid and phthalanilic acid.  相似文献   

13.
Electron ionization (EI) spectra and both positive and negative chemical ionization (CI) spectra have been obtained for four isoquinolinium ylides and two pyridinium ylides. Electron transfer reactions dominate the CI mass specra. The base peak in negative chemical ionization is the [M] ion, formed by electron capture. In the positive methane CI spectra the molecular ion, [M], is relatively more intense than [MH]+ showing electron transfer to be the main positive ionization process. In the positive ammonia CI spectra, proton transfer to give [MH]+ is the main ionization process, but electron transfer is also observed. The EI spectra show fragmentations in which the aromatic nitrogen moiety retains the charge and fragmentation is by loss of radicals or small neutral molecules from the side-chains. Radical driven reactions are proposed to explain these spectra.  相似文献   

14.
The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I–IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H]+ or [M + H–nH2O]+ in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05–20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05–1, 2–5 and 10–20 ng/mL, respectively. Steroids including the conjugated keto‐functional group at C3 showed good proton affinity and stability, and generated the [M + H]+ ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H]+ ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H ? H2O]+ or [M + H ? 2H2O]+ ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC‐MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I–V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Collisionally activated decompositions and ion-molecule reactions in a triple-quadrupole mass spectrometer are used to distinguish between cis- and trans-1,2-cyclopentanediol isomers. For ion kinetic energies varying from 5 eV to 15 eV (laboratory frame of reference), qualitative differences in the daughter ion spectra of [MH]+ are seen when N2 is employed as an inert collision gas. The cis ?1,2-cyclopentanediol isomer favors H2O elimination to give predominantly [MH- H2O]+. In the trans isomer, where H2O elimination is less likely to occur, the rearrangement ion [HOCH2CHOH]+ exists in significantly greater abundance. Ion-molecule reactions with NH3 under single-collision conditions and low ion kinetic energies can provide thermochemical as well as stereochemical information. For trans ?1,2-cyclopentanediol, the formation of [NH4]+ by proton transfer is an exothermic reaction with the maximum product ion intensity at ion kinetic energies approaching 0 eV. The ammonium adduct ion [M + NH4]+ is of greater intensity for the trans isomer. In the proton transfer reaction with the cis isomer, the formation of [NH4]+ is an endothermic process with a definite translational energy onset. From this measured threshold ion kinetic energy, the proton affinity of cis ?1,2-cyclopentanedioi was estimated to be 886 ± 10 kJ mol?1.  相似文献   

16.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

17.
This work presents the use of neutral losses (NL) for the identification of compounds related to the metabolism of tyrosine. The mass spectra of all the studied compounds, recorded at several collision energies, are compared. The fragmentation mechanism of protonated molecules, MH+, is explained by combining collision‐induced dissociation (CID) mass spectra and density functional theory (DFT) calculations. The results show that the first fragmentation is the elimination from MH+ of a neutral molecule including a functional group of the linear chain. Three primary neutral losses are observed: 17 u (NH3), 18 u (H2O) and 46 u (H2O+CO) characterizing amino, hydroxyl and carboxylic functions on the linear chain. The presence and abundance of ions corresponding to these losses are dependent on (i) the position of the functional group on the linear chain, (ii) the initial localisation of the protonating hydrogen, and (iii) the substitution of the aromatic ring. For compounds including a functional group on the benzylic carbon atom, the investigation of the other functions requires the knowledge of secondary fragmentations. Among these secondary fragmentations we have retained the loss of NH3 from [MH–18u]+ and the loss of ketene from [MH–17u]+. Experimentally these fragmentations are detected using losses of 35 u and 59/73 u. In other words, NL35 identifies hydroxy and amino compounds and NL 46 and/or NL59/73 identify carboxylic acids. The search for characteristic neutral losses is used for the analysis of compounds in a mixture and the analysis of biological fluid. We show that selective search of several neutral losses allows also the unambiguous differentiation of isomers and gives the opportunity to identify compounds in biological fluids. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The competitive formation of molecular ions M and protonated molecules [M + H]+ under fast atom bombardment (FAB) conditions was examined using various kinds of organic compounds. The use of protic/hydrophilic matrices such as thioglycerol and glycerol resulted in relatively large values of the peak intensity ratio I([M + H]+)/I(M) compared with the use of relatively aprotic/hydrophobic matrices such as m-nitrobenzyl alcohol and o-nitrophenyl octyl ether. The change of matrix from thiol-containing such as thioglycerol and dithiothreitol to alcoholic such as glycerol and pentamethylene glycol increased the I([M + H]+)/I(M) ratio. Furthermore, the change of matrix increased the peak intensity ratio of the doubly charged ion [M + 2H]2+ to [M + H]+ in the FAB mass spectra of angiotensin I and gramicidin S. The addition of acids to the matrix solution increased the I([M + H]+)/I(M) ratio, although such an effect did not always occur. The acetylation of simple aniline compounds markedly increased the I([M + H]+)/I(M) ratio. It was concluded from these results that the hydrogen bonding interaction between hydroxyl groups(s) of the matrix and basic site(s) of analyte molecules in solution acts advantageously as a quasi-preformed state for [M + H]+ formation, and that the presence of significant proton acceptor(s) such as carbonyl group in analytes hinder the M formation which may generally occur under FAB conditions. The formation of M and [M + H]+ ions seemed to occur competitively, reflecting or according to the interaction or solvation states between the analyte and matrix molecules in solution and the structural characteristics of the analytes.  相似文献   

19.
Secondary and tertiary amines have been reported to form [M–H]+ that correspond to dehydrogenation in matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI‐TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N‐benzyl group, which resulted in the formation of [M–D]+ and [M–H]+ ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N‐benzyl group showed high‐intensity [M–D]+ and [M–H]+ ion peaks, whereas those of secondary amines showed low‐intensity ion peaks. Ratios between the peak intensities of [M–D]+ and [M–H]+ greater than 1 suggested chemoselective dehydrogenation at the N‐benzyl groups. The presence of an electron donor group on the N‐benzyl groups enhanced the selectivity. The dehalogenation of amines with an N‐(4‐halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI‐TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Ions at m/z 47 have been generated from a variety of organosulfur compounds both at 70 eV and near threshold. From observations of the energetics of proton transfer from m/z 47 to reference bases of known proton affinity, the species obtained in all cases has been shown to be [CH2SH]+ rather than [CH3S]+. This result is shown to be consistent with recent ab initio calculations on these two isomers and collisional activation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号