首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Theoretical studies have shown that surface terminations, such as MAI or PbI layers, greatly affect the environmental stability of organic–inorganic perovskite. However, until now, there has been little effort to experimentally detect the existence of MAI or PbI terminations on MAPbI3 grains, let alone disclose their effects on the humidity degradation pathway of perovskite solar cell. Here, we successfully modified and detected the surface terminations of MAI and PbI species on polycrystalline MAPbI3 films. MAI-terminated perovskite film followed the moisture degradation process from MAPbI3 to hydrate MAPbI3⋅H2O and then into PbI2, with penetration of water molecules being the main driving force leading to the degradation of MAPbI3 layer by layer. In contrast, for the PbI-terminated perovskite film in a humid atmosphere, a deprotonation degradation pathway was confirmed, in which the film preferentially degraded directly from MAPbI3 into PbI2, here the iodine defects played a key role in promoting the dissociation of water molecules into OH and further catalyzing the decomposition of perovskite.  相似文献   

2.
Silicon (Si) solar cell has low optical absorption because of the low and indirect bandgap of Si, and the efficiency was trapped at 25% for 15 years. Si solar cell is able to achieve efficiency up to 30% by adding perovskite as multiple bandgap material through tandem formation. In this paper, the Si/perovskite interface layer was characterized to study the compatibility of perovskite on fluorine-doped tin oxide (FTO) glass and p-type Si wafer (p-Si). The single solution deposition step of methyl ammonium lead iodide, CH3NH3PbI3 (MAPbI3) perovskite film, was spin-coated at different concentration. The physical properties of the MAPbI3/FTO and MAPbI3/p-Si were obtained by profilometer, atomic force microscope, X-ray diffraction, and Raman spectroscopy. The optical properties were analyzed by ultraviolet-visible spectroscopy, photoluminescence, and infrared transmission. Then the electrical properties were measured by Hall effect. From the measurement, it is observed that 1.2M concentration of MAPbI3 thin film has the highest thickness, smoothest film surface, and largest crystallite size compared with 0.8M and 1.0M. It is found that there is an interaction in perovskite/Si interface and caused in a low-wavelength shift, and the increase in concentration of MAPbI3 helped in intensifying the Raman signal produced. 1.2M MAPbI3 thin film had the highest enhancement in light trapping property rather than 0.8M and 1.0M. The bulk concentration and conductivity of 1.2M perovskite were higher, but the resistivity was lower than 0.8M MAPbI3 because of more CH3NH3I and PbI2 concentration within MAPbI3 perovskite compound.  相似文献   

3.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

4.
《中国化学快报》2020,31(9):2249-2253
In the past ten years, perovskite solar cells were rapidly developed, but the intrinsic unbalanced charge carrier diffusion lengths within perovskite materials were not fully addressed by either a planar heterojunction or meso-superstructured perovskite solar cells. In this study, we report bulk heterojunction perovskite solar cells, where perovskite materials CH3NH3PbI3 is blended with solution-processed n-type TiOx nanoparticles as the photoactive layer. Studies indicate that one-step solution-processed CH3NH3PbI3:TiOx bulk-heterojunction thin film possesses enhanced and balanced charge carrier mobilities, superior film morphology with enlarged crystal sizes, and suppressed trap-induced charge recombination. Thus, bulk heterojunction perovskite solar cells by CH3NH3PbI3 mixed with 5 wt% of TiOx, which is processed by one-step method rather than typical two-step method, show a short-circuit current density of 20.93 mA/cm2, an open-circuit voltage of 0.90 V, a fill factor of 80% and with a corresponding power conversion efficiency of 14.91%, which is more than 30% enhancement as compared with that of perovskite solar cells with a planar heterojunction device structure. Moreover, bulk heterojunction perovskite solar cells possess enhanced device stability. All these results demonstrate that perovskite solar cells with a bulk heterojunction device structure are one of apparent approaches to boost device performance.  相似文献   

5.
New solar cells with Ag/C60/MAPbI3/Cu2ZnSnSe4 (CZTSe)/Mo/FTO multilayered structures on glass substrates have been prepared and investigated in this study. The electron-transport layer, active photovoltaic layer, and hole-transport layer were made of C60, CH3NH3PbI3 (MAPbI3) perovskite, and CZTSe, respectively. The CZTSe hole-transport layers were deposited by magnetic sputtering, with the various thermal annealing temperatures at 300 °C, 400 °C, and 500 °C, and the film thickness was also varied at 50~300 nm The active photovoltaic MAPbI3 films were prepared using a two-step spin-coating method on the CZTSe hole-transport layers. It has been revealed that the crystalline structure and domain size of the MAPbI3 perovskite films could be substantially improved. Finally, n-type C60 was vacuum-evaporated to be the electronic transport layer. The 50 nm C60 thin film, in conjunction with 100 nm Ag electrode layer, provided adequate electron current transport in the multilayered structures. The solar cell current density–voltage characteristics were evaluated and compared with the thin-film microstructures. The photo-electronic power-conversion efficiency could be improved to 14.2% when the annealing temperature was 500 °C and the film thickness was 200 nm. The thin-film solar cell characteristics of open-circuit voltage, short-circuit current density, fill factor, series-resistance, and Pmax were found to be 1.07 V, 19.69 mA/cm2, 67.39%, 18.5 Ω and 1.42 mW, respectively.  相似文献   

6.
A planar perovskite solar cell that incorporates a nanocarbon hole‐extraction layer is demonstrated for the first time by an inkjet printing technique with a precisely controlled pattern and interface. By designing the carbon plus CH3NH3I ink to transform PbI2 in situ to CH3NH3PbI3, an interpenetrating seamless interface between the CH3NH3PbI3 active layer and the carbon hole‐extraction electrode was instantly constructed, with a markedly reduced charge recombination compared to that with the carbon ink alone. As a result, a considerably higher power conversion efficiency up to 11.60 % was delivered by the corresponding solar cell. This method provides a major step towards the fabrication of low‐cost, large‐scale, metal‐electrode‐free but still highly efficient perovskite solar cells.  相似文献   

7.
A processing additive dripping (PAD) approach to forming highly efficient (CH3NH3)PbI3 (MAPbI3) perovskite layers was investigated. A MAPbI3(CB/DIO) perovskite film fabricated by this approach, which included briefly dripping chlorobenzene incorporating a small amount of diiodooctane (DIO) during casting of a MAPbI3 perovskite precursor dissolved in dimethylformamide, exhibited superior smooth, uniform morphologies with high crystallinity and large grains and revealed completely homogeneous surface coverage. The surface coverage and morphology of the substrate significantly affected the photovoltaic performance of planar heterojunction (PHJ) perovskite solar cells (PrSCs), resulting in a power conversion efficiency of 11.45 % with high open‐circuit voltage of 0.91 V and the highest fill factor of 80.87 %. Moreover, the PAD approach could effectively provide efficient MAPbI3(CB/DIO) perovskite layers for highly efficient, reproducible, uniform PHJ PrSC devices without performance loss or variation even over larger active areas.  相似文献   

8.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

9.
In perovskite solar cells and optoelectronics, perovskite film morphology controls the performance of the device. Various methods have been developed to control the morphology and coverage of the perovskite films. In this article platelet type perovskite morphlogy was synthesized using low temperature vacuum impregnation of the perovskite solution CH3NH3PbI3 resulting in complete coverage on TiO2 film. Vacuum impregnation synthesis of perovskites has the advantage of low cost and low temperature which faciliates application in flexible electronics and solar cells.  相似文献   

10.
Thin‐film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low‐cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two‐step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one‐step, solvent‐induced, fast crystallization method involving spin‐coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization. Analysis of the devices and films revealed that the perovskite films consist of large crystalline grains with sizes up to microns. Planar heterojunction solar cells constructed with these solution‐processed thin films yielded an average power conversion efficiency of 13.9±0.7 % and a steady state efficiency of 13 % under standard AM 1.5 conditions.  相似文献   

11.
Perovskite film with high crystal quality is fundamental to achieving high-performance solar cells. A fast nucleation process is crucial to improving the crystallization quality. Here, we propose a self-driven prenucleation strategy to achieve fast nucleation. This is realized through rational solvent design. The key characteristics of different solvents are systematically evaluated. Among them, formamide, with ultra-high dielectric constant, low Gutman donor number, and a high boiling point, is selected as the co-solvent. These unique characteristics render formamide a double-face solvent that is a good solvent for formamidinium iodide (FAI) and CsI while a poor solvent for PbI2. As a result, formamide induces the self-driven prenucleation of PbI2-DMSO seeding crystals and accelerates the nucleation, improving the crystalline quality of perovskite film. The efficiency of the hole transport layer-free carbon-based perovskite solar cells is boosted beyond 19 % for the first time.  相似文献   

12.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   

13.
Aligned and flexible electrospun carbon nanomaterials are used to synthesize carbon/perovskite nanocomposites. The free‐electron diffusion length in the CH3NH3PbI3 phase of the CH3NH3PbI3/carbon nanocomposite is almost twice that of bare CH3NH3PbI3, and nearly 95 % of the photogenerated free holes can be injected from the CH3NH3PbI3 phase into the carbon nanomaterial. The exciton binding energy of the composite is estimated to be 23 meV by utilizing temperature‐dependent optical absorption spectroscopy. The calculated free carriers increase with increasing total photoexcitation density, and this broadens the potential of this material for a broad range of optoelectronics applications. A metal‐electrode‐free perovskite solar cell (power conversion efficiency: 13.0 %) is fabricated with this perovskite/carbon composite, which shows great potential for the fabrication of efficient, large‐scale, low‐cost, and metal‐electrode‐free perovskite solar cells.  相似文献   

14.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed-cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA-MA mixed-cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI-MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI-MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI-MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed-cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high-performance hybrid lead halide perovskites.  相似文献   

15.
Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells. Here, we report a comprehensive study of the interfacial degradation and ion migration at the interface between CH3NH3PbI3 perovskite layer and Ag electrode. Using in situ photoemission spectroscopy measurements, we found that the Ag electrode could induce the degradation of perovskite layers, leading to the formation of PbI2 and AgI species and the reduction of Pb2+ ions to metallic Pb species at the interface. The unconventional enhancement of the intensities of I 3d spectra provides direct experimental evidences for the migration of iodide ions from CH3NH3PbI3 subsurface to Ag electrode. Moreover, the contact of Ag electrode and perovskite layers induces an interfacial dipole of 0.3 eV at CH3NH3PbI3/Ag interfaces, which may further facilitate iodide ion di usion, resulting in the decomposition of perovskite layers and the corrosion of Ag electrode.  相似文献   

16.
Nickel oxide (NiOx) is a promising hole transport material (HTM) for perovskite photovoltaics owing to its chemical stability and low cost. However, most NiOx based solar cells deliver relatively weak performance because of its insufficient electrical property and interfacial contact. In this work, a self-formed PbI2/NiOx interface was developed to stabilize the Ni3+ centers, which was beneficial for electrical transport and band alignment in perovskite solar cells. Combined with ultraviolet ozone treatment ( UVO ) and sequential deposition, the density of Ni3+ centers was greatly increased and could be stabilized by the PbI2 interface. These merits contributed coordinately to the fast hole extraction and low energy loss across the PbI2/NiOx interface, yielding power conversion efficiencies (PCEs) of over 19 %.  相似文献   

17.
Organometallic halide perovskites have attracted great research interest as light‐active materials for use in optoelectronics. Here, we report a high‐performance photoconductor based on a methylammonium lead iodide (MAPbI3) film that was prepared from a methylamine‐treated MAPbI3/PbI2 perovskite film. An ultrahigh responsivity of 3.6 A W?1 and detectivity of 5.4×1012 Jones were obtained for the film under 0.5 mW cm?2 white‐light illumination. In addition, under 420 nm light irradiation, the film exhibited its highest responsivity and detectivity of 30 A W?1 and 2.4×1014 Jones, respectively. The excellent photo‐response performance results from the improved electronic quality and suppressed nonradiative recombination channels of the treated perovskite thin film.  相似文献   

18.
Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low‐cost CH3NH3PbI3 (MAPbI3) perovskite QDs in the pores of earth‐abundant Fe‐porphyrin based metal organic framework (MOF) PCN‐221(Fex) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3@PCN‐221(Fex) (x=0–1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3@PCN‐221(Fe0.2) exhibits a record‐high total yield of 1559 μmol g?1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN‐221(Fe0.2) in the absence of perovskite QDs.  相似文献   

19.
报道了一种基于硫族金属复合物N4H9Cu7S4前驱体溶液制备硫化亚铜对电极的新方法. 分别制备了TiO2纳米颗粒多孔薄膜和TiO2纳米棒阵列结构的光阳极, 并在此基础上研究了基于硫化亚铜对电极的CdS/CdSe量子点敏化太阳电池的光电性能, 同时结合电化学阻抗技术考察了硫化亚铜对电极的催化性能. 结果表明: 与铂电极相比, 本方法制备的硫化亚铜电极对多硫电解质具有更高的催化活性, 所组装的CdS/CdSe量子点敏化太阳电池具有更优的光伏性能.  相似文献   

20.
Reaching the full potential of solar cells based on photo-absorbers of organic-inorganic hybrid perovskites requires highly efficient charge extraction at the interface between perovskite and charge transporting layer. This demand is generally challenged by the presence of under-coordinated metal or halogen ions, causing surface charge trapping and resultant recombination losses. These problems can be tackled by introducing a small molecule interfacial anchor layer based on dimethylbiguanide (DMBG). Benefitting from interactions between the nitrogen-containing functional groups in DMBG and unsaturated ions in CH3NH3PbI3 perovskites, the electron extraction of TiO2 is dramatically improved in association with reduced Schottky–Read–Hall recombination, as revealed by photoluminescence spectroscopy. As a consequence, the power conversion efficiency of CH3NH3PbI3 solar cells is boosted from 17.14 to 19.1 %, showing appreciably reduced hysteresis. The demonstrated molecular strategy based on DMBG enables one to achieve meliorations on key figures of merit in halide perovskite solar cells with improved stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号