首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanical behaviour of xerogels and aerogels is generally described in terms of brittle and elastic materials, like glasses or ceramics. The main difference compared to silica glass is the order of magnitude of the elastic and rupture moduli which are 104 times lower. However, if this analogy is pertinent when gels are under a tension stress (bending test) they exhibit a more complicated response when the structure is submitted to a compressive stress. The network is linearly elastic under small strains, then exhibits yield followed by densification and plastic hardening. As a consequence of the plastic shrinkage it is possible to densify and stiffen the gel at room temperature. These opposite behaviours (elastic and plastic) are surprisingly related to the same two kinds of gel features: the silanol content and the pore volume. Both elastic modulus and plastic shrinkage depend strongly on the volume fraction of pores and on the condensation reaction between silanols. On the mechanical point of view (rupture modulus and toughness), it is shown that pores and silanols play also an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size, calculated from rupture strength and toughness is related to the pore size distribution. Different kinds of gels structure (fractal or not fractal) have been synthesized by a control of the different steps of transformation such as sintering and plastic compaction. The relationships between structural and the elastic properties are discussed in terms of the percolation theory and fractal structure.  相似文献   

2.
Summary : A new biodegradable thermoplastic material based on a wheat flour by-product has been developed. The influence of protein content in wheat flour on the mechanical properties of the material has been investigated. For protein content between 4% and 10%, no influence of the protein content was evidenced, whereas beyond 10% w/w of proteins in the wheat flour, the mechanical properties of agro-based materials decrease, thus confirming the advantage of using a wheat flour by-product (i.e. with protein content below 8% w/w).  相似文献   

3.
Hybrid organic-inorganic materials were synthesized from acid catalysed sols of tetraethyl orthosilicate, 3-glycidoxypropyltrimethoxysilane and titanium or zirconium alkoxides. The mechanical properties of these materials were measured in different conditions of preparation. The elastic modulus E was determined by a resonance method and by Knoop microindentation. After a thermal treatment at 125°C for 120 h, E was around 3–5 and 1–2 GPa for the samples synthesized with titanium butoxide or zirconium butoxide, respectively. An increase in E in the samples cured for longer times was observed. Knoop microhardness also increased with the heating time and was larger in samples synthesized from titanium alkoxides than zirconium alkoxides. The two methods gave results in good agreement when applied to samples treated for shorter times. In the other samples Knoop microindentation gave a larger value of E compared to the resonance vibration method. Hardness to elastic modulus ratio, H/E, was evaluated by Knoop microindentation. The elastic recovery at the longest heat treatment time was similar to that of soda-lime glasses. Fracture toughness was measured by three points flexural test, a KIc in the range of 0.4–0.5 MPa m1/2 was evaluated for samples treated during 168 h.  相似文献   

4.
In this work the primary mechanical property profiles of a specific class of nano‐structured polymer/inorganic hybrid materials are characterized. By utilizing sol‐gel aluminosilicate synthesis with amphiphilic polyisoprene‐block‐poly(ethylene oxide) block copolymers as structure‐directing agents, block copolymer/aluminosilicate hybrid materials are prepared with nanometer scale hexagonally packed cylinders and lamellae of the inorganic hybrid components, as evidenced by small‐angle X‐ray scattering. Systematic thermal and dynamic mechanical analyses are performed on these hybrids as well as on the constituting components. Results reveal two transitions from the low temperature, glassy state of the hybrids into high temperature elastic plateau regions, with moduli that vary over orders of magnitude as a function of composition and morphology. The first transition can be assigned to the glass transition of the PI domains while the second is ascribed to a temperature induced softening of the organic components within the PEO/hybrid domains. The results suggest that in the present nanostructured block copolymer/aluminosilicate hybrid materials composition and morphology provide a powerful tool to tailor mechanical property profiles.

  相似文献   


5.
Nano-indentations using a Berkovich indenter were performed in order to analyze the mechanical properties of hybrid organic-inorganic coatings. This technique allows to measure low load deformations and therefore to estimate quantitatively mechanical properties of the coatings. The elastic modulus and the hardness were determined on the basis of the load-displacement curve. We report results obtained for class II hybrid coatings based on SiO2-PMMA prepared by sol-gel process. The effects of coating composition were investigated.  相似文献   

6.
橡胶木粉填充LLDPE复合材料的结构和力学性能   总被引:6,自引:0,他引:6  
用橡胶木粉填充线性低密度聚乙烯(LLDPE),研究了酸、碱溶液预处理木粉的效果和硅烷偶联荆(KH-570)、MMA接枝的天然橡胶胶乳(MGL-30)两种改性剂对橡胶木粉表面改性的效果,以及未粉粒径和填充量等对木粉/LLDPE复合材料力学性能的影响,并用SEM对复合材料拉伸断面的形态结构进行了分析。结果表明:木粉的拉径、木粉填充量和改性荆用量对复合材料的力学性能有较大的影响,经碱溶液预处理再用改性荆改性后的木粉能有效地改善木粉与LLDPE的界面粘结强度,提高橡胶木粉/LLDPE复合材料的力学性能。  相似文献   

7.
Resorcinol-Formaldehyde gels have been prepared in aqueous solutions. After a gelification stage at 80°C, an aging was performed in water or acetic acid solutions at ambient temperature or in the parent liquid at 80°C for different durations. Shear modulus of gels immersed in water is measured using the 3 points bending technique. The evolution of elastic constant with time depends on the pH of aging solution. The strengthening is more pronounced for aging under acidic conditions than in water. Nevertheless when the aging stage is performed at 80°C for a few days, quite identical values of shear modulus are obtained comparatively to acid treatment. The enhancement of mechanical properties of RF gels in acidic conditions is related to polycondensation reaction rates.  相似文献   

8.
9.
10.
Chemical treatments of hair such as dyeing, perming and bleaching could cause mechanical damage to the hair, which weakens the hair fibers and makes the hair break more easily. In this work, hyaluronate (HA) with different molecular weight (MW) was investigated for its effects on restoring the mechanical properties of damaged hair. It was found that low-MW HA (average MW~42 k) could significantly improve the mechanical properties, specifically the elastic modulus, of overbleached hair. The fluorescent-labeling experiments verified that the low-MW HA was able to penetrate into the cortex of the hair fiber, while high-MW HA was hindered. Fourier transform infrared spectrometry (FT-IR) results implied the formation of additional intermolecular hydrogen bonds in the HA-treated hair. Thermos gravimetric analysis (TGA) indicated that the HA-treated hair exhibited decreased content of loosely bonded water, and differential scanning calorimetry (DSC) characterizations suggested stronger water bonding inside the HA-treated hair, which could alleviate the weakening effect of loosely bonded water on the hydrogen bond networks within keratin. Therefore, the improved elastic modulus and mechanical strength of the HA-treated hair could be attributed to the enhanced formation of hydrogen bond networks within keratin. This study illustrates the capability of low-MW HA in hair damage repair, implying an enormous potential for other moisturizers to be used in hair care products.  相似文献   

11.
A facile blending strategy to fabricate multishape memory polymers (SMPs) with only one sort of phase transition material has been reported. In this work, olefin block copolymer (OBC) and styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS), which are both physically crosslinked, are blended with crystalline paraffin together. Due to the different interactions between polymer matrices and paraffin, the paraffin penetrated in OBC and SEBS exhibit separated melting transitions. It is quite interesting that merely paraffin distributed in OBC also shows two distinct melting transitions with enough OBC content in composites. Therefore, excellent quadruple shape memory effect can be achieved with a maximum of three melting transitions. Furthermore, through adjusting the polymer species and content, the mechanical and rheological properties can be conveniently tuned to a great extent. Compared with the reported strategies, this simple and controllable method sheds light on rapid design of multi‐SMPs using inexpensive raw materials, which greatly paves the way for multi‐SMPs from laboratory to factory.

  相似文献   


12.
偶联剂对TATB造型粉表面性质及力学性能的影响   总被引:2,自引:0,他引:2  
采用偶联技术制备TATB造型粉,研究了偶联剂加入前后TATB造型粉的表面行为及其力学性能。结果表明采用偶联技术能够改善TATB造型粉的力学性能和氟橡胶对TATB的粘附。其中,KH550是一种较为理想的改善TATB造型粉性能的偶联剂。  相似文献   

13.
根据共聚物组成的计算方法,合成了组成均匀的端羟基丁二烯与丙烯腈液体共聚物并用NMR观察和计算了该液体聚合物的序列分布,测定了力学性能  相似文献   

14.
运用弹性膜理论结合三角网格动力学模型模拟研究了平行板压缩软粒子的过程, 仔细考察了压缩过程中软粒子的形状变化、应力响应、力学松弛和粘弹行为. 模拟结果与已有的实验基本一致.  相似文献   

15.
Nomex/Thermoset honeycombs with hexagonal cell shape were fabricated by impregnating the Nomex T412 paper using a resol, a resol modified with 20 phr of a bismaleimide and a resol modified with 20 phr of a poly(vinyl butyral) (PVB) respectively. The density of the honeycombs ranged from 2.0 to 4.0 lb/ft3. To fabricate the Nomex/Thermoset honeycombs with dimensions of 300×300×50 mm, an expansion procedure was employed. An epoxy-based adhesive system comprising 4,4′-tetraglycidyl diaminodiphenyl methane 35%, diaminodiphenyl sulfone 12%, the resol 35% and the PVB 18% was formulated and used to bond honeycomb cell nodes before expanding stacked ribbons. The adhesive blend was formulated to obtain a good honeycomb shape by reducing spreading of the resin during cure. The cure behaviors of the adhesive and the resol were investigated by differential scanning calorimetry. The compressive mechanical properties of the honeycombs were investigated and the effects of the impregnating thermoset resin systems on the compressive mechanical properties of the honeycombs were analyzed. The effect of the compressive mechanical properties of the honeycombs comprising pure resol on cure conditions was investigated. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Peroxide-cured high-temperature vulcanized (HTV) silicone rubber was prepared by using allyl-capped carbosilane dendrimers, in which the core molecule is Si(CHaCH=CH2)4, as the cross-linker. It showed that this kind of allyl-capped carbosilane dendrimer improved the mechanical properties of silicone rubber.  相似文献   

17.
The accelerated thermal degradation of low-density polyethylene (LDPE) was studied in air at atmospheric pressure and temperatures of 70, 80, 90 and 100°C. The changes in elongation at break, traction resistance and density as a result of accelerated thermooxidative degradation were followed. Thermal analysis curves (TG, DTG and DTA) of non-aged and thermally aged LDPE were recorded, and the thermal analysis results were compared with those relating to the variations in the elongation at break, the traction resistance and the density as a consequence of accelerated thermal aging. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Lamellar nanomaterials with specific architectures and novel properties have received increasing attention from both scientific and technological fields in recent years because of their potential applications in catalysis, energy conversion, and storage devices. Bulk supercluster pellets with well-defined lamellar structures were fabricated by assembling silver clusters and mercaptoalkyl acids (MXA) to investigate the mechanical properties. The relationship between the assembled structure and pressure resistance was surveyed for the first time. The enhanced interlayer interactions were found to increase the elastic modulus of the Ag-MXA supercluster architectures.  相似文献   

19.
This communication describes a simple and effective method for welding electrospun nanofibers at the cross points to enhance the mechanical properties of their nonwoven mats. The welding is achieved by placing a nonwoven mat of the nanofibers in a capped vial with the vapor of a proper solvent. For polycaprolactone (PCL) nanofibers, the solvent is dichloromethane (DCM). The welding can be managed in a controllable fashion by simply varying the partial pressure of DCM and/or the exposure time. Relative to the pristine nanofiber mat, the mechanical strength of the welded PCL nanofiber mat can be increased by as much as 200%. Meanwhile, such a treatment does not cause any major structural changes, including morphology, fiber diameter, and pore size. This study provides a generic method for improving the mechanical properties of nonwoven nanofiber mats, holding great potential in various applications.

  相似文献   


20.
MMA接枝改性PVC/CaCO3纳米复合材料的力学性能   总被引:13,自引:0,他引:13  
采用熔融共混法制备PMMA接枝改性纳米CaCO3增韧PVC(PVC/CaCO3)复合材料,并研究了复合材料的力学性能.结果表明,通过表面PMMA的接枝改性,可以显著提高纳米CaCO3增韧聚氯乙烯复合材料的拉伸强度和拉伸模量,在纳米CaCO3颗粒表面PMMA包覆层厚度为2nm时,复合材料的拉伸强度和拉伸模量达到极大值.对比于未处理纳米CaCO3和钛酸酯偶联剂处理纳米CaCO3,PMMA接枝改性纳米CaCO3增韧PVC复合材料的拉伸强度得到较大幅度提高.SEM显示,经过PMMA接枝改性后的碳酸钙在PVC基体中分散均匀,与基体界面结合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号