首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, C11H12F2N4O3, exhibits an anti glycosylic bond conformation, with a torsion angle χ = −117.8 (2)°. The sugar pucker is N‐type (C4′‐exo, between 3T4 and E4, with P = 45.3° and τm = 41.3°). The conformation around the exocyclic C—C bond is −ap (trans), with a torsion angle γ = −177.46 (15)°. The nucleobases are stacked head‐to‐head. The crystal structure is characterized by a three‐dimensional hydrogen‐bond network involving N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.  相似文献   

2.
The octahedral title compound, [Ru(C2H5O)(NO)(NO2)2(C6H16N2)], crystallizes in the rhombohedral space group P31 with an ethoxy ligand axially coordinated trans to the nitro­syl ligand. The RuII ion is equatorially coordinated by a tetramethylethylenediamine group acting as a bidentate ligand, and to two nitro moieties whose planes are tilted with respect to the mean equatorial plane. Each nitro­gen ligand bonded to the metallic centre has a different hybridization state.  相似文献   

3.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

4.
The title compound, C10H12FN5O4·H2O, shows an anti glycosyl orientation [χ = −123.1 (2)°]. The 2‐deoxy‐2‐fluoroarabinofuranosyl moiety exhibits a major C2′‐endo sugar puckering (S‐type, C2′‐endo–C1′‐exo, 2T1), with P = 156.9 (2)° and τm = 36.8 (1)°, while in solution a predominantly N conformation of the sugar moiety is observed. The conformation around the exocyclic C4′—C5′ bond is −sc (trans, gauche), with γ = −78.3 (2)°. Both nucleoside and solvent molecules participate in the formation of a three‐dimensional hydrogen‐bonding pattern via intermolecular N—H...O and O—H...O hydrogen bonds; the N atoms of the heterocyclic moiety and the F substituent do not take part in hydrogen bonding.  相似文献   

5.
The title bis­(glycyl‐l ‐aspartic acid) oxalate complex {systematic name: bis­[2‐(2‐ammonio­acetamido)butane­dioic acid] oxalate 0.4‐hydrate}, 2C6H11N2O5+·C2O42−·4H2O, crystallizes in a triclinic space group with the planar peptide unit in a trans conformation. The asymmetric unit consists of two glycyl‐l ‐aspartic acid mol­ecules with positively charged amino groups and neutral carboxyl groups, and an oxalate dianion. The twist around the C—Cα bond indicates that both the peptide mol­ecules adopt extended conformations, while the twist around the N—Cα bond shows that one has a folded and the other a semi‐extended state. The present complex can be described as an inclusion compound with the dipeptide mol­ecule as the host and the oxalate anion as the guest. The usual head‐to‐tail sequence of aggregation is not observed in this complex, as is also the case with the glycyl‐l ‐aspartic acid dihydrate mol­ecule. The study of aggregation and inter­action patterns in binary systems is the first step towards understanding more complex phenomena. This further leads to results that are of general interest in bimolecular aggregation.  相似文献   

6.
The title compound, C16H36N+·C6H7O3?, crystallizes with two independent anions and two independent cations in the asymmetric unit. Each anion adopts an strans conformation and forms O?H—C hydrogen bonds to the α‐methyl­ene groups of four neighbouring tetra­butyl­ammonium cations, to create a three‐dimensional hydrogen‐bonded network.  相似文献   

7.
The conformations of peptides and proteins are often influenced by glycans O‐linked to serine (Ser) or threonine (Thr). (2S,4R)‐4‐Hydroxyproline (Hyp), together with L ‐proline (Pro), are interesting targets for O‐glycosylation because they have a unique influence on peptide and protein conformation. In previous work we found that glycosylation of Hyp does not affect the N‐terminal amide trans/cis ratios (Ktrans/cis) or the rates of amide isomerization in model amides. The stereoisomer of Hyp—(2S,4S)‐4‐hydroxyproline (hyp)—is rarely found in nature, and has a different influence both on the conformation of the pyrrolidine ring and on Ktrans/cis. Glycans attached to hyp would be expected to be projected from the opposite face of the prolyl side chain relative to Hyp; the impact this would have on Ktrans/cis was unknown. Measurements of 3J coupling constants indicate that the glycan has little impact on the Cγendo conformation produced by hyp. As a result, it was found that the D ‐galactose residue extending from a Cγendo pucker affects both Ktrans/cis and the rate of isomerization, which is not found to occur when it is projected from a Cγexo pucker; this reflects the different environments delineated by the proline side chain. The enthalpic contributions to the stabilization of the trans amide isomer may be due to disruption of intramolecular interactions present in hyp; the change in enthalpy is balanced by a decrease in entropy incurred upon glycosylation. Because the different stereoisomers—Hyp and hyp—project the O‐linked carbohydrates in opposite spatial orientations, these glycosylated amino acids may be useful for understanding of how the projection of a glycan from the peptide or protein backbone exerts its influence.  相似文献   

8.
The 2‐propynyl group in the title compound, C17H22O10, adopts an exoanomeric conformation, with the acetylenic group gauche with respect to position C1. Comparison of 13C NMR chemical shifts from solution and the solid state suggest that the acetylenic group also adopts a conformation anti to C1 in solution. The pyranose ring adopts a 4C1 conformation. Of the three secondary O‐acetyl groups, that on position O4, flanked by two equatorial groups, adopts a syn conformation, in agreement with recent generalizations [González‐Outeiriño, Nasser & Anderson (2005). J. Org. Chem. 70 , 2486–2493]. The acetyl group on position O3 adopts a gauche conformation, also in agreement with the recent generalizations, but that on position O2 adopts a syn conformation, not in agreement with the recent generalizations.  相似文献   

9.
In the title compound, C17H21NO3S, the S atom is in a distorted tetrahedral geometry and the N atom exhibits sp2 character. The antiperiplanar conformation is observed for the N and hydroxyl‐O atoms and the torsion angle around the N—C linkage is ?136.3 (2)°. The mol­ecules are linked by O—H?O intermolecular hydrogen bonds to form an infinite one‐dimensional chains along the c axis.  相似文献   

10.
The organic acid–base complex 1,1,3,3‐tetramethylguanidinium 4‐methylbenzenesulfonate, C5H14N3+·C7H7O3S, was obtained from the corresponding 1,1,3,3‐tetramethylguanidinium 4‐methylbenzenesulfinate complex, C5H14N3+·C7H7O2S, by solid‐state oxidation in air. Comparison of the two crystal structures reveals similar packing arrangements in the monoclinic space group P21/c, with centrosymmetric 2:2 tetramers being connected by four strong N—H...O=S hydrogen bonds between the imine N atoms of two 1,1,3,3‐tetramethylguanidinium bases and the O atoms of two acid molecules.  相似文献   

11.
The crystal structure of the title compound, [FeCl2(C4H8O2)(H2O)2]n, contains six‐coordinate FeII atoms in approximately octahedral environments. The FeII atoms have symmetry, i.e. all pairs of identical ligands are trans. The structure consists of polymeric chains made up of dioxane mol­ecules, in the chair conformation with symmetry, linking the FeII centers. The chains are crosslinked by O—H?Cl hydrogen bonds.  相似文献   

12.
The two title mol­ecules, both C15H14N2O3, are roughly planar and display a trans conformation with respect to the –N=N– double bond, as found for other diazene derivatives. In both compounds, there are intramolecular O—H⋯O hydrogen bonds and the crystal packing is governed by weak intermolecular C—H⋯O hydrogen bonds and π–π stacking.  相似文献   

13.
The title compound, C16H24O10·0.11H2O, is a key intermediate in the synthesis of 2‐deoxy‐2‐[18F]fluoro‐d ‐glucose (18F‐FDG), which is the most widely used molecular‐imaging probe for positron emission tomography (PET). The crystal structure has two independent molecules (A and B) in the asymmetric unit, with closely comparable geometries. The pyranose ring adopts a 4C1 conformation [Cremer–Pople puckering parameters: Q = 0.553 (2) Å, θ = 16.2 (2)° and ϕ = 290.4 (8)° for molecule A, and Q = 0.529 (2) Å, θ =15.3 (3)° and ϕ = 268.2 (9)° for molecule B], and the dioxolane ring adopts an envelope conformation. The chiral centre in the dioxolane ring, introduced during the synthesis of the compound, has an R configuration, with the ethoxy group exo to the mannopyranose ring. The asymmetric unit also contains one water molecule with a refined site‐occupancy factor of 0.222 (8), which bridges between molecules A and B via O—H...O hydrogen bonds.  相似文献   

14.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

15.
The crystal structure of the title compound, C14H25NO11·2H2O, has been determined. The glucose and galactose residues are in a 4C1 conformation. The N‐acetyl group has a Zanti conformation.  相似文献   

16.
The title compound, [Cd(C10H8O4)(C8H12N6)]n, crystallizes with an asymmetric unit comprising a divalent CdII atom, a benzene‐1,4‐diacetate (PBEA2−) ligand and a complete 1,4‐bis(1,2,4‐triazol‐1‐yl)butane (BTB) ligand. [Cd(PBEA)]n double chains, arranged parallel to the c axis, are formed through an exo‐tridentate binding mode of the PBEA2− ligands. These [Cd(PBEA)]n double chains are pillared by tethering BTB ligands, in which the BTB shows a transtranstrans conformation, to establish [Cd(PBEA)(BTB)]n two‐dimensional coordination polymer (4,4)‐layer slab patterns. The three‐dimensional supramolecular architecture is formed by C—H...O hydrogen bonds and C—H...π interactions.  相似文献   

17.
In the title compound, 2‐amino‐7‐(2‐deoxy‐β‐d ‐erythro‐pentofuran­osyl)‐3,7‐dihydro­pyrrolo[2,3‐d]pyrimidin‐4‐one, C11H14N4O4, the N‐glycosylic bond torsion angle, χ, is anti [−106.5 (3)°]. The 2′‐deoxy­ribofuran­osyl moiety adopts the 3T4 (N‐type) conformation, with P = 39.1° and τm = 40.3°. The conformation around the exocyclic C—C bond is ap (trans), with a torsion angle, γ, of −173.8 (3)°. The nucleoside forms a hydrogen‐bonded network, leading to a close‐packed multiple‐layer structure with a head‐to‐head arrangement of the bases. The nucleobase interplanar O=C—C⋯NH2 distance is 3.441 (1) Å.  相似文献   

18.
The structures of three syn‐1,3‐dialkoxy­thia­calix[4]arenes with unusual conformations in the solid state are reported. The pinched cone conformation of syn‐22,42‐dihydroxy‐12,32‐bis­(prop‐2‐enyl­oxy)thia­calix[4]arene, C30H24O4S4, (3a), is stabilized by two intra­molecular hydrogen bonds, remarkably formed from both OH groups to the same ether O atom. In syn‐22,42‐dihydroxy‐15,25,35,45‐tetra­nitro‐12,32‐bis­(prop‐2‐enyl­oxy)thia­calix[4]arene acetone disolvate, C30H20N4O12S4·2C3H6O, (3b1), the mol­ecule is found in the 1,3‐alternate conformation. The crystallographic C2 symmetry is due to a twofold rotation axis running through the centre of the calixarene ring. The hydroxy groups cannot form intra­molecular hydrogen bonds as in (3a) and both are bonded to an acetone solvent mol­ecule. The mol­ecule of the pseudo‐polymorph of (3b1) in which the same compound crystallized without any solvent, viz. (3b2), is located on a crystallographic mirror plane. Only one of the two hydroxy groups forms a hydrogen bond, and this is with a nitro group of a neighbouring mol­ecule as acceptor. Mol­ecular mechanics calculations for syn‐1,3‐diethers suggest a preference of the 1,3‐alternate over the usual cone conformation for thia­calix[4]arene versus calix[4]arene and for para‐nitro versus para‐H derivatives.  相似文献   

19.
The title compound, C21H28O4, has a 4‐acetoxy substituent positioned on the steroid α face. The six‐membered ring A assumes a conformation intermediate between 1α,2β‐half chair and 1α‐sofa. A long Csp3—Csp3 bond is observed in ring B and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular‐orbital Hartree–Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C—H...O hydrogen bonds.  相似文献   

20.
The compound tetramethyl μ-monothiopyrophosphate (C4H12O6P2S) crystallizes in the monoclinic space group C 2/c, with (at -130°C) a = 10.322 Å, b = 8.229 Å, c = 12.062 Å, β = 98.44°, and Dcalc = 1.639 g/mL3 and Z = 4. The crystal structure has been determined by single crystal X-ray diffraction to give a final R value of 0.0329 for 614 independent observed reflections [F˚ > 2.5σ(F˚)]. The sulfur atom resides on a crystallographic two-fold axis. The P S P bond angle is 105.4° and the P S bond lengths are 2.093 Å. The bond angles around phosphorus range from 99.1° to 118.2°. The terminal PO bond is 1.465 Å, and the methoxyl P O bond is about 1.556 Å. The H3C O P bond angle is about 119.5°. Many structural features are interpreted in terms of π-bonding to phosphorus. Comparisons with the structures of pyrophosphate and related compounds indicate that the combined effects of increased acuteness of the P S P bond and the increased length of the P—S bonds lead to an increase of about 0.4 Å in the separation of phosphorus atoms in the sulfur-bridging compound. These facts, together with the weakness of the P S bond, must be taken into account in the interpretation of kinetic data for enzymatic reactions of phosphorothiolates as substrates in place of phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号