首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of polyanion and polycation-sensitive membrane electrodes to detect five different preparations of fucoidan is described. Unlike linear polyanionic molecules previously measured with polymer membrane-based electrochemical sensors, fucoidans from marine brown algae are all highly branched, sulfated polysaccharides with varying charge densities and structures, depending on the species of seaweed, method of extraction used and extent of purification. When tridodecylmethylammonium (TDMA) was used as the ion-exchanger, a large, non-equilibrium EMF response was observed over a concentration range of 0.5–50 μg mL−1 fucoidan. Fucoidan was also measured by titration with polycationic protamine, using a dinonylnaphthalene sulfonate (DNNS)-doped membrane electrode as the potentiometric endpoint detector. Potentiometric titration was used to determine the binding ratio between protamine and fucoidan at the neutralization endpoint for each fucoidan preparation. This binding ratio was then used to successfully determine the fucoidan content of commercially available nutritional supplements. Fucoidan was also measured in undiluted blood serum, demonstrating that this method may be applicable for measuring fucoidan for clinical applications.  相似文献   

2.
Fucoidan is a fucose-rich sulfated polysaccharide typically found in the cell wall of marine algae but also recently isolated from terrestrial sources. Due to a variety of biological activities, including antioxidant properties, fucoidan exhibits an attractive therapeutic potential against a wide array of metabolic diseases associated with oxidative stress. We used FTIR, 1H NMR and 13C NMR spectroscopy to investigate the structural features of a fucoidan fraction extracted from the brown alga Cystoseira compressa (CYS). The antioxidant potential of CYS was measured by DPPH, ABTS and FRAP assays, which revealed a radical scavenging capacity that was confirmed in in vitro cellular models of hepatic and endothelial cells. The same antioxidant effects were observed for another fucoidan fraction previously identified in the terrestrial tree Eucalyptus globulus (EUC). Moreover, in hepatic cells, CYS and EUC exhibited a significant antisteatotic action, being able to reduce intracellular triglyceride content through the regulation of key genes of hepatic lipid metabolism. EUC exerted stronger antioxidant and antisteatotic effects as compared to CYS, suggesting that both marine and terrestrial sources should be considered for fucoidan extraction and therapeutic applications.  相似文献   

3.
Quantitative determination revealed the presence of storage glucan (6.0%), fucoidan (19.2%) and alginate (12.7%) in the biomass of the brown alga Punctaria plantaginea collected from the Sea of Japan. The polysaccharides were isolated from the alga by fractional extraction followed by additional purification procedures. Unlike the well-known laminarans the storage polysaccharide from P. plantaginea was shown to be a linear (1→6)-β-d-glucopyranan, which is new for brown alga. The content of guluronic acid (G) residues in the alginate molecules exceeded the content of mannuronic acid residues (M), M/G = 0.5. Poly-G and poly-MG blocks were isolated from the products of partial hydrolysis of alginic acid; however, a heterogeneous mixture of polysaccharide fragments was obtained instead of the expected poly-M fraction. Preliminary data suggests that fucoidan from this alga is a new for brown algae type of sulfated polysaccharide (xylofucan) with a main backbone built of α-l-fucopyranose residues. This chain contains multiple sulfate groups and single non-sulfated β-d-xylopyranose residues as substituents.  相似文献   

4.
The chemistry of substances derived from plants has received a great deal of attention in the last several decades. Today, natural products and their synthetic analogs also play an important role in the pharmaceutical and food industry. Several interesting reviews on algae were published in the last 10 years. Algae, especially the red algae, are very helpful in every day practice in many fields, e.g. algal polysaccharides, agar, carrageenan and some algae extracts are used in agricultural, medicines and in food products, respectively (The Constituents of Red Algae, 1999; Gelling Hydrocolloids in Food Products Applications, 1979, p. 186; Marine Natural Products Chemistry, 1997, p. 337; Algae Polysaccharides, 1983, p. 195). The biological and pharmaceutical properties promote interest among chemists to focus their attention on algae, as yet, a wide open field (Synthesis and Proceedings of the Second EUMAC Workshop, Marine Eutrophication and Bentic Macrophytes, p. 2). The most extensively studied algal phyla are Chlorophyceae (green algae) (J. Phycol. 26 (1990) 670), Rhodophyceae (red algae) (J. Phycol. 25 (1989) 522) and Phaeophyceae (brown algae) (J. Phycol. 31 (1995) 325; J. Phycol. 32 (1996) 614). Concentrations of four elements (Ca, Mg, K, Na) were determined in the above-mentioned algal phyla by different atomic spectroscopic methods (F-AES, ICP-AES) after the digestion of algal samples with cc. HNO3 in a microwave apparatus. Not only the Ca and Mg contents, but the ratio of the calcium to magnesium was calculated in every case. This ratio was lower (0.5–0.8) in green algae than in the red and brown algae (1.3–14.4). Therefore, the green algae are better magnesium sources than the red and brown. The elemental composition is of great importance in the ion system of human organism. It is usually characterized by the ion quotient ([Ca2+]+[Na+]:[Mg2+]+[K+]), which is approximately 1.0 under ideal conditions. However, in the human body this mole ratio generally varies between 2.5 and 4.0. The ion quotient was calculated by averaging between 1 and 2 in different algal phyla. This means that the 2.5–4.0 mole ratio can be decreased by different algal foods in the human organism.  相似文献   

5.
Fucoidan is a fucose-rich sulfated polysaccharide with attractive therapeutic potential due to a variety of biological activities, including antioxidant action. Fucoidan is typically found in the cell wall of marine brown algae, but extra-algal sources have also been discovered. In the present work, for the first time we extracted a water soluble fucoidan fraction from the roots of the terrestrial shrub Ferula hermonis. This fucoidan fraction was termed FUFe, and contained fucose, glucose, sulfate, smaller amounts of monosaccharides such as galactose and mannose, and a minor quantity of proteins. FUFe structural features were investigated by FTIR, 1H NMR and 13C NMR spectroscopy. The antioxidant property of FUFe was measured by DPPH, ABTS and FRAP assays, which revealed a high radical scavenging capacity that was confirmed in in vitro cellular models. In hepatic and endothelial cells, 50 μg/mL FUFe could reduce ROS production induced by intracellular lipid accumulation. Moreover, in hepatic cells FUFe exhibited a significant antisteatotic action, being able to reduce intracellular triglyceride content and to regulate the expression of key genes of hepatic lipid metabolism. Altogether, our results candidate FUFe as a possible bioactive compound against fatty liver disease and related vascular damage.  相似文献   

6.
The polysaccharide compositions of the brown algae Dictyopteris polypodioides and Sargassum sp. from the Mediterranean Sea were determined. The principal polysaccharide of the studied algae (about 12% of the dry alga weight) was alginic acid. The content of water-soluble polysaccharides was low. The amount of fucoidan was less than 1% of the dry alga weight; of neutral polysaccharides, less than 0.25%. The monosaccharide compositions of fucoidans and neutral polysaccharides were investigated. Experiments on soft agar-agar models showed that fucoidans from D. polypodioides and Sargassum sp. exhibited antitumor activity against RPMI-7951 human melanoma cells.  相似文献   

7.
The use of a number of species of marine brown algae in the implementation of bioremediation strategies for toxic heavy metals is being considered and evaluated. The biosorption capacity of these algae for heavy metals resides mainly in a group of linear polysaccharides known as alginates that occur as a gel in the algal thallus. The potential for selective metal binding by the biomass of two species of Sargassum was evaluated by 1H-NMR (nuclear magnetic resonance) following a high temperature, alkaline extraction and purification of their alginate polysaccharide. The alkaline extraction protocol applied to Sargassum fluitans and Sargassum siliquosum yielded alginate samples of low viscosity, suitable for direct acquisition of well-resolved spectra. Estimates of both the ratio of β-d-mannopyranuronosyl (M) and α-l-gulopyranuronosyl (G) residues along the polymer chain and the frequencies of occurrence of diad uronic acid residue pairs were obtained. Guluronic acid (G) was the major component in all, extracts and the GG diads accounted for more than 49% of the polymer diads. Whereas the performance of Sargassum spp. in the metal biosorption process is a function of both its alginate content and composition, the occurrence of “G-blocks” in both purified alginates and in the raw brown seaweed is critical because it results in a well-established selectivity for divalentions, potentially increasing the commercial effectiveness of targeted biosorption as a means of remediation.  相似文献   

8.
Though numerous valuable compounds from red algae already experience high demand in medicine, nutrition, and different branches of industry, these organisms are still recognized as an underexploited resource. This study provides a comprehensive characterization of the chemical composition of 15 Arctic red algal species from the perspective of their practical relevance in medicine and the food industry. We show that several virtually unstudied species may be regarded as promising sources of different valuable metabolites and minerals. Thus, several filamentous ceramialean algae (Ceramium virgatum, Polysiphonia stricta, Savoiea arctica) had total protein content of 20–32% of dry weight, which is comparable to or higher than that of already commercially exploited species (Palmaria palmata, Porphyra sp.). Moreover, ceramialean algae contained high amounts of pigments, macronutrients, and ascorbic acid. Euthora cristata (Gigartinales) accumulated free essential amino acids, taurine, pantothenic acid, and floridoside. Thalli of P. palmata and C. virgatum contained the highest amounts of the nonproteinogenic amino acid β-alanine (9.1 and 3.2 μM g−1 DW, respectively). Several red algae tend to accumulate heavy metals; although this may limit their application in the food industry, it makes them promising candidates for phytoremediation or the use as bioindicators.  相似文献   

9.
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.  相似文献   

10.
In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs. Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity, and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 μg mL−1 after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells displayed distinguished blue, green, and red colors during in vitro imaging when excited by three filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could be used as a potential candidate for various biomedical applications. Moreover, the conversion of low-cost/waste natural biomass into products of value promotes the sustainable development of the economy and human society.  相似文献   

11.
Marine macroalgae are well known to release a wide spectrum of volatile organic components, the release of which is affected by environmental factors. This paper aimed to identify the essential oil (EO) compounds of the brown algae Cystoseira compressa collected in the Adriatic Sea monthly, from May until August. EOs were isolated by hydrodistillation using a Clavenger-type apparatus and analyzed by gas chromatography coupled with mass spectrometry (GC–MS). One hundred four compounds were identified in the volatile fraction of C. compressa, accounting for 84.37–89.43% of the total oil. Samples from May, June, and July were characterized by a high share of fatty acids (56, 69, and 34% respectively) with palmitic acid being the dominant one, while in the August sample, a high content of alcohols (mainly phytol and oleyl alcohol) was found. Changes in the other minor components, which could be important for the overall aroma and biological activities of the algal samples, have also been noted during the vegetation periods. The results of this paper contribute to studies of algal EOs and present the first report on C. compressa EOs.  相似文献   

12.
To search for efficient agricultural antifungal lead compounds, 39 Chimonanthus praecox derivatives were designed, synthesized, and evaluated for their antifungal activities. The structures of target compounds were fully characterized by 1H NMR, 13C NMR, and MS spectra. The preliminary bioassays revealed that some compounds exhibited excellent antifungal activities in vitro. For example, the minimum inhibitory concentration (MIC) of compound b15 against Phytophthora infestans was 1.95 µg mL−1, and the minimum inhibitory concentration (MIC) of compound b17 against Sclerotinia sclerotiorum was 1.95 µg mL−1. Therefore, compounds b15 and b17 were identified as the most promising candidates for further study.  相似文献   

13.
Falsirhodobacter sp. alg1 expresses two alginate lyases, AlyFRA and AlyFRB, to produce the linear monosaccharide 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH) from alginate, metabolizing it to pyruvate. In this study, we prepared recombinant AlyFRA and AlyFRB and their immobilized enzymes and investigated DEH production. Purified AlyFRA and AlyFRB reacted with sodium alginate and yielded approximately 96.8% DEH. Immobilized AlyFRA and AlyFRB were prepared using each crude enzyme solution and κ-carrageenan, and immobilized enzyme reuse in batch reactions and DEH yield were examined. Thus, DEH was produced in a relatively high yield of 79.6%, even after the immobilized enzyme was reused seven times. This method can produce DEH efficiently and at a low cost and can be used to mass produce the next generation of biofuels using brown algae.  相似文献   

14.
Several diseases, including atherosclerosis, are characterized by inflammation, which is initiated by leukocyte migration to the inflamed lesion. Hence, genes implicated in the early stages of inflammation are potential therapeutic targets to effectively reduce atherogenesis. Algal-derived polysaccharides are one of the most promising sources for pharmaceutical application, although their mechanism of action is still poorly understood. The present study uses a computational method to anticipate the effect of fucoidan and alginate on interactions with adhesion molecules and chemokine, followed by an assessment of the cytotoxicity of the best-predicted bioactive compound for human monocytic THP-1 macrophages by lactate dehydrogenase and crystal violet assay. Moreover, an in vitro pharmacodynamics evaluation was performed. Molecular docking results indicate that fucoidan has a greater affinity for L-and E-selectin, monocyte chemoattractant protein 1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) as compared to alginate. Interestingly, there was no fucoidan cytotoxicity on THP-1 macrophages, even at 200 µg/mL for 24 h. The strong interaction between fucoidan and L-selectin in silico explained its ability to inhibit the THP-1 monocytes migration in vitro. MCP-1 and ICAM-1 expression levels in THP-1 macrophages treated with 50 µg/mL fucoidan for 24 h, followed by induction by IFN-γ, were shown to be significantly suppressed as eight- and four-fold changes, respectively, relative to cells treated only with IFN-γ. These results indicate that the electrostatic interaction of fucoidan improves its binding affinity to inflammatory markers in silico and reduces their expression in THP-1 cells in vitro, thus making fucoidan a good candidate to prevent inflammation.  相似文献   

15.
Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 µg mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL−1. Stigmasterol (1), β-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-β-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides.  相似文献   

16.
Several metal (Na+, Ca2+) or ammonium (n-Bu4N+) derivatives of alginic acid, an abundant bio-polymer obtained from the cell walls of brown algae, were synthesized. Their potential to act as organocatalysts to catalyze the 1,2-addition of various silyl derivatives to carbonyl compounds was evaluated for the first time. Ammonium alginate 1h is able to promote the reaction in modest to good isolated yields (up to 98%) affording access to a large range of substrates (β-cyano alcohols or ester, β-substituted methylacrylate or acrylonitrile, and cyanohydrin) by using only 5 mol % of catalyst.  相似文献   

17.
The retention of137Cs in algal polysaccharides has been studied. Alginic acid showed higher retention value than the tested alginate samples. The retention of137Cs in carrageen types and agar was first investigated. The binding capacities were found to be equal for carrageenan types and agar.  相似文献   

18.
In order to improve the mechanical strength and imprinting efficiency, a novel bovine serum albumin (BSA) molecularly imprinted poly(ionic liquid)/calcium alginate composite cryogel membrane (MICM) was prepared. The results of the tensile test indicated that the MICM had excellent mechanical strength which could reach up to 90.00 KPa, 30.30 times higher than the poly (ionic liquid) membrane without calcium alginate; the elongation of it could reach up to 93.70%, 8.28 times higher than the poly (ionic liquid) membrane without calcium alginate. The MICM had a very high welling ratio of 1026.56% and macropore porosity of 62.29%, which can provide effective mass transport of proteins. More remarkably, it had a very high adsorption capacity of 485.87 mg g−1 at 20 °C and 0.66 mg mL−1 of the initial concentration of BSA. Moreover, MICM also had good selective and competitive recognition toward BSA, exhibiting potential utility in protein separation. This work can provide a potential method to prepare the protein-imprinted cryogel membrane with both high mechanical strength and imprinting efficiency.  相似文献   

19.
Renal cell carcinoma is the most lethal cancer of the urological system due to late diagnosis and treatment resistance. Propolis, a beehive product, is a valuable natural source of compounds with bioactivities and may be a beneficial addition to current anticancer treatments. A Portuguese propolis sample, its fractions (n-hexane, ethyl acetate, n-butanol and water) and three subfractions (P1–P3), were tested for their toxicity on A498, 786-O and Caki-2 renal cell carcinoma cell lines and the non-neoplastic HK2 kidney cells. The ethyl acetate fraction showed the strongest toxicity against A498 (IC50 = 0.162 µg mL−1) and 786-O (IC50 = 0.271 µg mL−1) cells. With similar toxicity against 786-O, P1 (IC50 = 3.8 µg mL−1) and P3 (IC50 = 3.1 µg mL−1) exhibited greater effect when combined (IC50 = 2.5 µg mL−1). Results support the potential of propolis and its constituents as promising coadjuvants in renal cell carcinoma treatment.  相似文献   

20.
Optosensing chitosan-based membranes have been applied for the detection of heavy metals, especially in drinking water. The novelty of this study is based on the use of sulphated polysaccharides, in such optosensing membranes, aiming at an improved analytical performance. The sulphated polysaccharides, such as ulvan, fucoidan and chondroitin sulfate, were extracted from by-products and wastes of marine-related activities. The membranes were developed for the analysis of aluminum. The variation in the visible absorbance of the sensor membranes after the contact between the chromophore and the aluminum cation was studied. The membranes containing sulphated polysaccharides showed improved signals when compared to the chitosan-only membrane. As for the detection limits for the membranes containing ulvan, fucoidan and chondroitin sulfate, 0.17 mg L−1, 0.21 mg L−1 and 0.36 mg L−1 were obtained, respectively. The values were much lower than that obtained for the chitosan-only membrane, 0.52 mg L−1, which shows the improvement obtained from the sulphated polysaccharides. The results were obtained with the presence of CTAB in analysis solution, which forms a ternary complex with the aluminum cation and the chromophore. This resulted in an hyperchromic and batochromic shift in the absorption band. When in the presence of this surfactant, the membranes showed lower detection limits and higher selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号