首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(−)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2′,6′-dimethoxy-4′-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.  相似文献   

2.
Ocimum campechianum Mill. (Peruvian basil) is an essential oil-bearing plant of the Lamiaceae family. Volatile oil produced through steam distillation of Peruvian basil was examined to establish the aromatic and stable isotope profiles of samples (n = 9) from three different cultivated plots in Peru. The resulting essential oils were analyzed by GC/FID, GC/MS, and GC/IRMS. In accordance with findings from other researchers, multiple chemotypes, defined by the most abundant aromatic compounds, exist within these populations. Overall, 55% of samples are the eugenol chemotype (values ranging 15.4–30.2%), 33% are the methyl eugenol chemotype (values ranging 68.1–68.7%), and a single sample is a mixture of both chemotypes, containing high levels of both eugenol (38.1%) and methyl eugenol (8.6%). Stable isotope ratios, δ2H and δ13C, performed on prominent compounds provide supporting data for distinguishing chemotypes. Complete aromatic profiles, stable isotope ratios, and essential oil yield are established for each sample. This study confirms the existence of multiple chemotypes and, for the first time, to the author’s best knowledge, establishes stable isotope ratios for O. campechianum essential oil, which proves a useful tool in further investigating plant metabolism and determining essential oil authenticity.  相似文献   

3.
The endocannabinoid system plays an essential role in the regulation of analgesia and human immunity, and Cannabinoid Receptor 2 (CB2) has been proved to be an ideal target for the treatment of liver diseases and some cancers. In this study, we identified CB2 antagonists using a three-step “deep learning–pharmacophore–molecular docking” virtual screening approach. From the ChemDiv database (1,178,506 compounds), 15 hits were selected and tested by radioligand binding assays and cAMP functional assays. A total of 7 out of the 15 hits were found to exhibit binding affinities in the radioligand binding assays against CB2 receptor, with a pKi of 5.15–6.66, among which five compounds showed antagonistic activities with pIC50 of 5.25–6.93 in the cAMP functional assays. Among these hits, Compound 8 with the 4H-pyrido[1,2-a]pyrimidin-4-one scaffold showed the best binding affinity and antagonistic activity with a pKi of 6.66 and pIC50 of 6.93, respectively. The new scaffold could serve as a lead for further development of CB2 drugs. Additionally, we hope that the model in this study could be further utilized to identify more novel CB2 receptor antagonists, and the developed approach could also be used to design potent ligands for other therapeutic targets.  相似文献   

4.
Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.  相似文献   

5.
The cannabinoid receptor 2 (CB2 receptor) has attracted considerable interest, mainly due to its potential as a target for therapeutics for treating various diseases that have a neuroinflammatory or neurodegenerative component while avoiding the adverse psychotropic effects that accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this research, we are interested in the discovery of new chemotypes as highly selective CB2 modulators, which may serve as good starting points for further optimization towards the development of CB2 therapeutics. In search of new chemotypes as CB2 selective agents, we screened a series of triazole derivatives with interesting bioactive scaffolds, which led to the discovery of two novel and highly selective ligands for CB2 receptors. Compounds 6 and 11 produced a concentration-dependent inhibition of specific [3H]-CP55,940 (CB2) binding with Ki ± SEM values of 105.3 ± 22.6 and 116.4 ± 19.5 nM, respectively, while no binding affinity towards CB1 receptors or opioid receptors was observed. The CB2 functional activity of 6 and 11, as measured by a GPCR Tango assay (G-protein independent β-arrestin translocation assay), revealed that these compounds act as CB2 agonists with EC50 values ± SEM of 1.83 ± 0.16 and 1.14 ± 0.52 µM, respectively. Molecular modeling results showed that both compounds fit well into the active site of the CB2 receptor and showed strong hydrophobic interactions with key residues. In conclusion, the new triazole derivatives (6 and 11) showed promising activity towards CB2 receptors and have great potential to be developed into therapeutically useful CB2 agonists through hit-to-lead optimization.  相似文献   

6.
By arranging substrates in a “reaction ready” state through noncovalent interactions, supramolecular nanoreactors/catalysts show high selectivity and/or rate acceleration features. Herein, we report the host–guest complexation of 9-(10-)substituted anthracene derivatives (G1–G3) with cucurbit[n]uril (CB[n], n = 8, 10), and the photoreactions of these derivatives in the presence of CB[n] hosts. Both CB[10] and CB[8] showed no obvious effects on the photoreaction of 9,10-disubstituted derivative G1. For G2 and G3, CB[10] operated as either a nanoreactor or catalyst (10%) for the photodimerization of two compounds with high selectivity and high yield. However, although CB[8] formed a 1 : 2 complex with G2, as also observed with CB[10], the photosolvolysis product (9-anthracenemethanol) was obtained quantitatively after photoirradiation of the CB[8]·2G2 complex. This unexpected photosolvolysis was rationalized by a plausible catalytic cycle in which anthracene acts as a photoremovable protecting group (PPG) and the carbonium ion intermediate is stabilized by CB[8].

The photodimerization of 9-substituted anthracene derivative was tremendously promoted by a catalytic amount of cucurbit[10]uril (CB[10]) in water. While CB[8] exclusively induced the photosolvolysis of the anthracene derivative.  相似文献   

7.
Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly)3-Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide)2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ. A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units.

A platinum terpyridyl complex, pentapeptide Phe-(Gly)3-Cys and cucurbit[8]uril assemble into a “pendant necklace” with hybrid head-to-head and head-to-tail arrangements in aqueous medium.  相似文献   

8.
In this study, a new series of Mannich bases, 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2( 3H )-benzoxazolones ( 1a–g ), were synthesized by the Mannich reaction. Inhibitory effects of the newly synthesized compounds towards carbonic anhydrases (CAs) and acetylcholinesterase (AChE) enzymes were evaluated to find out new potential drug candidate compounds. According to the inhibitory activity results, Ki values of the compounds 1 and 1a–g were in the range of 12.3 ± 1.2 to 154.0 ± 9.3 nM against hCA I, and they were in the range of 8.6 ± 1.9 to 41.0 ± 5.5 nM against hCA II. Ki values of acetazolamide (AZA) that was used as a reference compound were 84.4 ± 8.4 nM towards hCA I and 59.2 ± 4.8 nM towards hCA II. Ki values of the compounds 1 and 1a–g were in the range of 35.2 ± 2.0 to 158.9 ± 33.5 nM towards AChE. Ki value of Tacrine (TAC), the reference compound, was 68.6 ± 3.8 nM towards AChE. Furthermore, docking studies were done with the most potent compounds 1d , 1g , and 1f (in terms of hCA I, hCA II, and AChE inhibition effects, respectively) to determine the binding profiles of the series with these enzymes. Additionally, the prediction of ADME profiles of the compounds pointed out that the newly synthesized compounds had desirable physicochemical properties as lead compounds for further studies.  相似文献   

9.
Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1 H -pyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 – 400 µM. The compounds 4i (PSE2 = 461.5) and 4g (PSE1 = 193.2) had the highest PSE values in cytotoxicity assays. Ki values of the compounds were in the range of 59.8 ± 3.0 - 12.7 ± 1.7 nM towards hCA I and in the range of 24.1 ± 7.1 - 6.9 ± 1.5 nM towards hCA II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency towards hCA I and hCA II, respectively. These compounds can be considered as lead compounds for further research.  相似文献   

10.
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer’s disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.  相似文献   

11.
The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.  相似文献   

12.
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed at high levels in testes and seminal vesicles; it is also present in prostate tissue and involved in gonadal and non-gonadal testosterone biosynthesis. The enzyme is membrane-bound, and a crystal structure is not yet available. Selective aryl benzylamine-based inhibitors were designed and synthesised as potential agents for prostate cancer therapeutics through structure-based design, using a previously built homology model with docking studies. Potent, selective, low nanomolar IC50 17β-HSD3 inhibitors were discovered using N-(2-([2-(4-chlorophenoxy)phenylamino]methyl)phenyl)acetamide (1). The most potent compounds have IC50 values of approximately 75 nM. Compound 29, N-[2-(1-Acetylpiperidin-4-ylamino)benzyl]-N-[2-(4-chlorophenoxy)phenyl]acetamide, has an IC50 of 76 nM, while compound 30, N-(2-(1-[2-(4-chlorophenoxy)-phenylamino]ethyl)phenyl)acetamide, has an IC50 of 74 nM. Racemic C-allyl derivative 26 (IC50 of 520 nM) was easily formed from 1 in good yield and, to determine binding directionality, its enantiomers were separated by chiral chromatography. Absolute configuration was determined using single crystal X-ray crystallography. Only the S-(+)-enantiomer (32) was active with an IC50 of 370 nM. Binding directionality was predictable through our in silico docking studies, giving confidence to our model. Importantly, all novel inhibitors are selective over the type 2 isozyme of 17β-HSD2 and show <20% inhibition when tested at 10 µM. Lead compounds from this series are worthy of further optimisation and development as inhibitors of testosterone production by 17β-HSD3 and as inhibitors of prostate cancer cell growth.  相似文献   

13.
The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7–14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7–14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7–14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.  相似文献   

14.
The Friedel-Krafts intramolecular cyclization of N-chloroacetyl- and N--bromopropionyl-4-methylspiro[tetrahydroquinoline-2-cyclohexanes] was used to obtain 2-oxo-1,2,5,6-tetrahydro-4H-spiro[pyrrolo(3,2,1-i,j)quinoline-4,1-cyclohexanes]— spiro analogs of lilolidine alkaloids.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1504–1507, November, 1993.  相似文献   

15.
The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.3.1.1.7) and carbonic anhydrases (CAs, EC 4.2.1.1). 1-(4-hydroxyphenyl)- 2-((aryl)thio)ethanones as possible AChE and CAs inhibitors were synthesized, and their chemical structures were confirmed by IR, 1H NMR, 13C NMR, and HRMS. The compounds 2 and 4 were found potent AChE inhibitors with the Ki values of 22.13 ±1.96 nM and 23.71 ±2.95 nM, respectively, while the compounds 2 (Ki = 8.61 ±0.90 nM, on hCA I) and 1 (Ki = 8.76 ±0.84 nM, on hCA II) had considerable CAs inhibitory potency. The lead compounds may help the scientists for the rational designing of an innovative class of drug candidates targeting enzyme-based diseases.  相似文献   

16.
The growing risk of antimicrobial resistance besides the continuous increase in the number of cancer patients represents a great threat to global health, which requires intensified efforts to discover new bioactive compounds to use as antimicrobial and anticancer agents. Thus, a new set of pyridothienopyrimidine derivatives 2a,b–9a,b was synthesized via cyclization reactions of 3-amino-thieno[2,3-b]pyridine-2-carboxamides 1a,b with different reagents. All new compounds were evaluated against five bacterial and five fungal strains. Many of the target compounds showed significant antimicrobial activity. In addition, the new derivatives were further subjected to cytotoxicity evaluation against HepG-2 and MCF-7 cancer cell lines. The most potent cytotoxic candidates (3a, 4a, 5a, 6b, 8b and 9b) were examined as EGFR kinase inhibitors. Molecular docking study was also performed to explore the binding modes of these derivatives at the active site of EGFR-PK. Compounds 3a, 5a and 9b displayed broad spectrum antimicrobial activity with MIC ranges of 4–16 µg/mL and potent cytotoxic activity with IC50 ranges of 1.17–2.79 µM. In addition, they provided suppressing activity against EGFR with IC50 ranges of 7.27–17.29 nM, higher than that of erlotinib, IC50 = 27.01 nM.  相似文献   

17.
A series of eleven 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were designed and synthesized and their biological activities were evaluated. Synthesis involved the Gewald reaction to synthesize ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ring, and SNAr reactions. Compound 4 was 1.6- and ~7-fold more potent than the lead compound 1 in cell proliferation and microtubule depolymerization assays, respectively. Compounds 4, 5 and 7 showed the most potent antiproliferative effects (IC50 values < 40 nM), while compounds 6, 8, 10, 12 and 13 had lower antiproliferative potencies (IC50 values of 53–125 nM). Additionally, compounds 4–8, 10 and 12–13 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that diminish the clinical efficacy of paclitaxel (PTX). In the NCI-60 cell line panel, compound 4 exhibited an average GI50 of ~10 nM in the 40 most sensitive cell lines. Compound 4 demonstrated statistically significant antitumor effects in a murine MDA-MB-435 xenograft model.  相似文献   

18.
1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent β-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 μM and FG160a = 13.2 μM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.  相似文献   

19.
The search for two- and three-dimensional materials with slow relaxation of the magnetization (single-ion magnets, SIM and single-molecule magnets, SMM) has become a very active area in recent years. Here we show how it is possible to prepare two-dimensional SIMs by combining Dy(III) with two different anilato-type ligands (dianions of the 3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone: C6O4X22−, with X = H and Cl) in dimethyl sulfoxide (dmso). The two compounds prepared, formulated as: [Dy2(C6O4H2)3(dmso)2(H2O)2]·2dmso·18H2O (1) and [Dy2(C6O4Cl2)3(dmso)4]·2dmso·2H2O (2) show distorted hexagonal honeycomb layers with the solvent molecules (dmso and H2O) located in the interlayer space and in the hexagonal channels that run perpendicular to the layers. The magnetic measurements of compounds 1, 2 and [Dy2(C6O4(CN)Cl)3(dmso)6] (3), a recently reported related compound, show that the three compounds present slow relaxation of the magnetization. In compound 1 the SIM behaviour does not need the application of a DC field whereas 2 and 3 are field-induced SIM (FI-SIM) since they show slow relaxation of the magnetization when a DC field is applied. We discuss the differences observed in the crystal structures and magnetic properties based on the X group of the anilato ligands (H, Cl and Cl/CN) in 1–3 and in the recently reported derivative [Dy2(C6O4Br2)3(dmso)4]·2dmso·2H2O (4) with X = Br, that is also a FI-SIM.  相似文献   

20.
Due to the great potential of biocompatible cucurbit[7]uril (CB7) and 4-sulfonatocalix[4]arene (SCX4) macrocycles in drug delivery, the confinement of the pharmaceutically important metronidazole as an ionizable model drug has been systematically studied in these cavitands. Absorption and fluorescence spectroscopic measurements gave 1.9 × 105 M−1 and 1.0 × 104 M−1 as the association constants of the protonated metronidazole inclusion in CB7 and SCX4, whereas the unprotonated guests had values more than one order of magnitude lower, respectively. The preferential binding of the protonated metronidazole resulted in 1.91 pH unit pKa diminution upon encapsulation in CB7, but the complexation with SCX4 led to a pKa decrease of only 0.82 pH unit. The produced protonated metronidazole–SCX4 complex induced nanoparticle formation with protonated chitosan by supramolecular crosslinking of the polysaccharide chains. The properties of the aqueous nanoparticle solutions and the micron-sized solid composite produced therefrom by nano spray drying were unraveled. The results of the present work may find application in the rational design of tailor-made self-assembled drug carrier systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号