首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A mixture of post-consumer polymer waste (PE/PP/PS) was pyrolysed over cracking catalysts using a fluidising reaction system similar to the FCC process operating isothermally at ambient pressure. Greater product selectivity was observed with a commercial FCC equilibrium catalyst (FCC-E1) with about 53 wt% olefin products in the C3-C6 range. Experiments carried out with various catalysts gave good yields of valuable hydrocarbons with differing selectivity in the final products dependent on reaction conditions. A kinetic model based on a lumping reaction scheme for the observed products and catalyst coking behaviours has been investigated. The model gave a good representation of experiment results. This model provides the benefits of lumping product selectivity, in each reaction step, in relation to the performance of the catalyst used and particle size selected as well as the effect of operation conditions, such as rate of fluidising gas and reaction temperature. It is demonstrated that under appropriate reaction temperatures and suitable catalysts can have the ability to control both the product yield and product distribution from polymer degradation, and can potentially lead to a cheaper process with more valuable products.  相似文献   

2.
3.
The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed.  相似文献   

4.
5.
Recycling is considered to play an essential role in developing a sustainable economy. A restrictive environmental legislation has forced German economy into extensive recycling activities. Meanwhile, German society and German industry have more than six years of practical experience with recycling of postconsumer plastic waste from household packaging due to this legislative situation. It is time to critically evaluate the situation. This paper summarizes the development in Germany and tries to show ecological impacts based on a life-cycle analysis and correlates these data with economical consequences.  相似文献   

6.
Despite the fact that more and more methods and solutions are used in the recycling of polymers, there are still some problems, especially in the recycling of cross-linked materials such as rubber. Usually the biggest problem is the lack of compatibility between the cross-linked rubber and the thermoplastic matrix. In this study we applied ground tire rubber (GTR) as recycled material. The GTR was embedded into polyethylene (PE) and polyethylene/ethylene-vinyl acetate copolymer (PE/EVA) matrices. In order to increase the compatibility of the components electron beam (EB) irradiation was applied. The results showed that the irradiation has a beneficial effect on the polymer–GTR interfacial connection. The EB treatment increased not only the tensile strength but also the elongation at break. The irradiation had also positive effect on the impact strength properties.  相似文献   

7.
Waste polymer materials were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The concentrations of 35 elements were determined by using different types of external standards, namely glass and polyethylene (PE) based. Prior to the LA-ICP-MS analysis of determined elements, Na and/or Zn were used as internal standards. The investigations concentrated mainly on the detection of Cr, As, Cd, Sn, Sb, Hg, and Pb. Using PE-based calibration standards, the measured concentrations in the waste polymers were within 49% of the wet chemical data. The determined deviation was up to 102% when using the glass standards. Trace concentration of As and Hg (and also of S) could be determined with a concentration below 1 mg/kg. However, Hg provided very low intensity with a high relative standard deviation (RSD) and was therefore not further evaluated. Cryomilling of polymers was applied to reduce the particle size of the material and improved the precision and accuracy of LA-ICP-MS analysis. On average, the LA-ICP-MS results showed a deviation from the wet chemical reference analysis of 38% and an RSD of 56% for pressed polymer powder samples prepared by cryomilling. In general, waste pellets without sample preparation (i.e., use of pellets as delivered) are too heterogeneous, not suitable for micro-beam techniques, and showed a strong matrix dependence. With homogeneous pellets that appear similar to each other agreement in the determined concentrations was found for some elements.  相似文献   

8.
Chemical recycling of PET waste into hydrophobic textile dyestuffs   总被引:1,自引:0,他引:1  
The paper aims at effective chemical recycling of poly(ethylene terephthalate) (PET) fiber waste into useful products, such as hydrophobic disperse dyes for synthetic textiles. For this, PET fiber waste was glycolytically depolymerized using excess of ethylene glycol in the presence of sodium sulfate as catalyst. The product, pure bis(2-hydroxyethylene terephthalate) (BHET) was obtained with >60% yield by successive recrystallization. In order to synthesize hydrophobic disperse dyes, applicable to synthetic textile fibers, BHET was converted to bis(2-chloroethylene terephthalate), reacted with the p-nitro benzoic acid, reduced and then reacted with bromine and potassium thiocyanate to get benzothiazole derivative. Coupling with N,N-diethylaniline produced a bright yellow disperse dye (Dye A). Similarly, coupling of p-amino benzoic ester with N,N-diethylaniline led to an orange colored disperse dye (Dye B). These dyes were applied onto polyester fabric by conventional method. Results in terms of depth of dyeing, evenness and the performance characteristics were found to be promising.  相似文献   

9.
Ernst T  Popp R  van Eldik R 《Talanta》2000,53(2):347-357
Analytical data on element concentrations in plastics is an important prerequisite for the recycling of technical waste plastics. The chemical resistance and high additive contents of such materials place a high demand on analytical methods for quantifying elements in thermoplastics from electrotechnical applications. The applicability of three common independent analytical methods (EDXRF, AAS, ICP-AES) for the quantification of heavy metals in such technical waste plastics of varying composition was studied. Following specific sample pre-treatments, such as closed vessel microwave assisted digestion and wet ashing with H(2)SO(4), three hazardous metals (Pb, Cd, Sb) were determined. Conditions were investigated to minimize matrix effects for all analytical techniques employed. The trueness for the quantification of Cd was checked by using the certified reference material VDA 001-004 (40-400 mug g(-1) Cd in polyethylene), and no significant differences to certified values were found. The best detection limits were found to be 2, 1.3 and 7.9 mug g(-1) for Cd, Pb and Sb, respectively. In technical waste polymers, Sb was detected to be in the range 1-7%, Cd in the range 80-12 000 mug g(-1) and Pb in the range 90-700 mug g(-1). The precision reached for the analysis of this complex material, is comparable for all methods, and can be expressed by a relative standard deviation smaller than 8%. Application of multivariate analysis of variances (MANOVA) showed no differences between the mean results, except for the ICP-AES analysis following wet ashing with H(2)SO(4).  相似文献   

10.
废弃SCR催化剂的循环再利用及表征分析研究   总被引:1,自引:0,他引:1  
针对废弃SCR脱硝催化剂常规再利用处理后存在SO_2氧化率高的问题,提出了一种新型的废弃催化剂再利用新工艺,包括酸洗、还原酸浸和活性组分负载等步骤,以有效控制再利用催化剂的SO_2氧化率。实验考察了经不同步骤处理后所得催化剂的组分、脱硝效率和SO_2氧化率的变化情况,并对催化剂进行了深入的分析表征。结果表明,新鲜催化剂、废弃催化剂、常规再利用催化剂、新型再利用催化剂的脱硝效率和SO_2氧化率分别为99.0%和0.43%、77.0%和0.46%、94.2%和0.80%、99.3%和0.48%,采用本方法获得的再利用催化剂不仅脱硝效率完全恢复,而且SO_2氧化率得到了很好的控制。通过对催化剂的分析表征发现,采用常规再利用技术不能有效清除废弃催化剂表面的高聚态钒物种,而本方法则可以有效清理这类高聚态钒物种,并以高度分散的钒物种进行替代,从而有效控制再利用催化剂的SO_2氧化率。  相似文献   

11.
In Japan, full-scale waste plastic recycling business started around 1970. Since then, in parallel with the efforts to develop new uses of recycled products, remarkable progress has also been made in recycling/molding technologies. The most popular recycling/molding technologies applicable to thermoplastics are of melt-and-mold type. This presentation discusses the technologies in their present situations, economics and existing disadvantages. The quality standards are set for some recycled products, the relations among recycling technologies, products' physical properties, and quality standards. Among others, explanations are given of waste-derived solid fuel manufacturing technologies, incineration technologies paired with thermal energy recovery currently available.  相似文献   

12.
It is elementary to recognize the benefits and the negative impacts of the use of plastic materials on modern societies. Polyethylene (PE) is the major plastic component present in the municipal solid waste. In this paper, two types of low-density PE (LDPE) waste with different mechanical recycling stress histories were used to investigate the influence of recycling cycles on pyrolysis. The kinetic triplet and thermal degradation study were obtained using TGA data.To determine the sample composition and hydrocarbon arrangements, ultimate, proximate and X-ray diffraction analyses were carried out. Taking advantage of these analyses and combining them with differential scanning calorimetry (DSC) data, a series–parallel pyrolysis pathway was formulated. The waste of recycled polyethylene presented low enthalpy of pyrolysis, at about 205 J/g against 299 J/g for a virgin PE. The DSC analyses evidenced a multi-step reaction behavior of the pyrolysis, confirmed by the kinetic study using different isoconversional methods: the waste of recycled polyethylene presented a higher variation of activation energies as a function of the fraction reacted. The main conclusion is that the results suggest that the recycling stress history promotes the increase of long carbon chains while weakening the boundary among the compounds. This explains the fact that recycled waste needs less activation energy than other samples to degrade thermally. Finally, different categories of low-density polyethylene wastes must be considered when dealing with either kinetics or modeling of the product recovery process.  相似文献   

13.
Large quantities of thermoplastic engineering plastics are used in the manufacture of electrical household appliances. The prevailing environmental situation necessitates an investigation of their reutilization after service life. In order to increase the chances of this re-applicability, a high level of product quality has to be strived for. Different thermoplastics were investigated, but - regarding its application in washing machine water tanks - in more detail PP and its recyclability after the aggravating conditions of long-term attack of boiling detergent. It was found that recycled mono-PP has good chances for re-use, if it is adequately stabilized either initially or sub-sequently.  相似文献   

14.
Glycolysis of poly (ethylene terephthalate) bottle waste was carried out using microwave energy. A domestic microwave oven of 800 W was used with suitable modification for carrying out the reaction under reflux. The catalysts used for the depolymerization in ethylene glycol (EG) were zinc acetate and some simple laboratory chemicals such as sodium carbonate, sodium bicarbonate and barium hydroxide. Comparison of results was made from the point of view of the yield of bis (2-hydroxyethylene) terephthalate (BHET) and the time taken for depolymerization. It was observed that under identical conditions of catalyst concentration and PET:EG ratio, the yield of BHET was nearly same as that obtained earlier by conventional electric heating. However, the time taken for completion of reaction was reduced drastically from 8 h to 35 min. This has led to substantial saving in energy.  相似文献   

15.
Applied Biochemistry and Biotechnology - Storage polymers in bacterial cells can be extracted and used as biodegradable thermoplastics. However, widespread applications have been limited by high...  相似文献   

16.
Radioactive waste is generated from the nuclear applications and it should properly be managed according to the regulations set by the regulatory authority. Poly(carbonate urethane) and poly(bisphenol a-co-epichlorohydrin) are radiation-resistant polymers and they are possible candidate materials that can be used in the radioactive waste management. In this study, maximum allowable waste activity that can be embedded into these polymers and dose rate distribution of the waste drum (containing waste and the polymer matrix) were found via Monte Carlo simulations. The change of mechanical properties of above-mentioned polymers was simulated and their variations within the waste drum were determined for 15, 30 and 300 years after embedding.  相似文献   

17.
《印度化学会志》2021,98(9):100124
Various studies on arsenic pollution reveal that high concentrations of arsenic were found in many districts of western Uttar Pradesh, India. There arsenic concentrations were higher than the permissible limit given by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). There is a requirement to bioremediate arsenic due to its harmful effect. On the other hand, Poly(ethylene terephthalate) was being repeatedly used as packaging materials, due to which various environmental issues regarding PET waste disposal have generated. In the present study, PET waste was recycled into various aromatic amides by aminolysis and ammonolysis. These aromatic amides were used as surfactants. Various studies have been carried out for biosorption of heavy metal through Bacillus cereus. The efforts were made to enhance bioremediation of arsenic in different water samples spiked with Bacillus cereus in the presence of synthesized aromatic amides. This study explored the possibility to increase bioremediation of arsenic by bacteria using recycled PET waste. The results of this study indicated that in the presence of aromatic amides the percent biosorption could be enhanced by bacteria up to 20–60%.The other significant approach of this study is recycling of PET waste.  相似文献   

18.
19.
Journal of Thermal Analysis and Calorimetry - The aim of this work is the evaluation of thermal degradation temperatures of two polymeric blends constituted by polyethylene PE, polypropylene PP,...  相似文献   

20.
Portland cement was mixed with kaolinite clay and epoxy polymer at different ratios to immobilize radioactive waste ions. The physical and mechanical properties of the mixtures in presence and in absence of some chemicals were investigated. Thermal analysis and infrared spectra of each mixture were also determined. The release of radioactive ions from cement, kaolinite clay, polymer mixture was studied. The presence of 7.5% kaolinite and 6% epoxy polymer increased the mechanical strength of cement mixed by 40% water, and decreased leachability of ions from mixture. Studies were also performed on a mixture of cement and 7.5% kaolinite cubes coated with a layer of epoxy polymer. Leachability of ions from these samples was decreased. A proposed container was designed to prevent release of ions from the immobilized matrix to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号