首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In an article published by Helvetica Chimica Acta in 1995, chemist P. Martin describes the synthesis of 2′-O-alkylated ribonucleosides for use in therapeutic antisense oligonucleotides (ASOs). This work was motivated by the need for a modified ribose structure that was compatible with solid-phase synthesis protocols and that, when incorporated into an oligonucleotide, would render it resistant to nucleases without attenuating its ability to hybridize to a complementary RNA target. Martin described a robust route to 2′-O-alkylribonucleosides in which the ribose 2′-OH group is substituted with 2′-ethylene glycol derivatives. Oligonucleotides containing these modifications displayed überraschende Eigenschaften – ‘surprising properties’ – notably, higher affinity and specificity for RNA substrates and greater stability to nucleases relative to their unmodified counterparts. Today, the 2′-ethylene glycol modification is universally known in the field as the 2′-O-methoxyethyl (MOE) modification. The chemistry features in four ASO drugs and many others in clinical trials. Here, we 1) summarize the synthesis of the MOE-modified ribose; 2) outline the properties of MOE-modified oligonucleotides as reported in Martin’s article; 3) highlight the first approved MOE-modified ASO drugs, mipomersen and nusinersen; and 4) survey MOE-modified ASOs in clinical development. In the outlook, we put these developments into context and consider future possibilities for the MOE modification.  相似文献   

2.
Fast and efficient ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence‐related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MSE (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MSE technique is as efficient as the traditional MS/MS method, yet MSE is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2′‐ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MSE approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MSE. Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time‐of‐flight (QTOF) MS/MS and MSE methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Advances in RNA research and RNA nanotechnology depend on the ability to manipulate and probe RNA with high precision through chemical approaches, both in vitro and in mammalian cells. However, covalent RNA labeling methods with scope and versatility comparable to those of current protein labeling strategies are underdeveloped. A method is reported for the site‐ and sequence‐specific covalent labeling of RNAs in mammalian cells by using tRNAIle2‐agmatidine synthetase (Tias) and click chemistry. The crystal structure of Tias in complex with an azide‐bearing agmatine analogue was solved to unravel the structural basis for Tias/substrate recognition. The unique RNA sequence specificity and plastic Tias/substrate recognition enable the site‐specific transfer of azide/alkyne groups to an RNA molecule of interest in vitro and in mammalian cells. Subsequent click chemistry reactions facilitate the versatile labeling, functionalization, and visualization of target RNA.  相似文献   

4.
DNA-directed chemical synthesis has matured into a useful tool with applications such as fabrication of defined (nano)molecular architectures, evolution of amplifiable small-molecule libraries, and nucleic acid detection. Most commonly, chemical methods were used to join oligonucleotides under the control of a DNA or RNA template. The full potential of chemical ligation reactions can be uncovered when nonnatural oligonucleotide analogues that can provide new opportunities such as increased stability, DNA affinity, hybridization selectivity, and/or ease and accuracy of detection are employed. It is shown that peptide nucleic acid (PNA) conjugates, nonionic biostable DNA analogues, allowed the fashioning of highly chemoselective and sequence-selective peptide ligation methods. In particular, PNA-mediated native chemical ligations proceed with sequence selectivities and ligation rates that reach those of ligase-catalyzed oligodeoxynucleotide reactions. Usually, sequence-specific ligations can only be achieved by employing short-length probes, which show DNA affinities that are too low to allow stable binding to target segments in large, double-stranded DNA. It is demonstrated that the PNA-based ligation chemistry allowed the development of a homogeneous system in which rapid single-base mutation analyses can be performed even on double-stranded PCR DNA templates.  相似文献   

5.
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8‐nucleotide RNA sequence. The expression of a reporter could be varied by over 17‐fold when using PUF‐based activators and repressors. The specificity of the method was established by using wild‐type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light‐dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.  相似文献   

6.
Off-target effects remain a significant challenge in the therapeutic use of gapmer antisense oligonucleotides (AONs). Over the years various modifications have been synthesized and incorporated into AONs, however, precise control of RNase H-induced cleavage and target sequence selectivity has yet to be realized. Herein, the synthesis of the uracil and cytosine derivatives of a novel class of 2′-deoxy-2′-fluoro-3′-C-hydroxymethyl-β-d -lyxo-configured nucleotides has been accomplished and the target molecules have been incorporated into AONs. Experiments on exonuclease degradation showed improved nucleolytic stability relative to the unmodified control. Upon the introduction of one or two of the novel 2′-fluoro-3′-C-hydroxymethyl nucleotides as modifications in the gap region of a gapmer AON was associated with efficient RNase H-mediated cleavage of the RNA strand of the corresponding AON:RNA duplex. Notably, a tailored single cleavage event could be engineered depending on the positioning of a single modification. The effect of single mismatched base pairs was scanned along the full gap region demonstrating that the modification enables a remarkable specificity of RNase H cleavage. A cell-based model system was used to demonstrate the potential of gapmer AONs containing the novel modification to mediate gene silencing.  相似文献   

7.
8.
Hybridization of complementary oligonucleotides is essential to highly valuable research tools in many fields including genetics, molecular biology, and cell biology. For example, an antisense molecule for a particular segment of sense messenger RNA allows gene expression to be selectively turned off, and the polymerase chain reaction requires complementary primers in order to proceed. It is hoped that the antisense approach may lead to therapeutics for treatment of various diseases including cancer. Areas of active research in the antisense field focus on the mechanisms of cellular uptake of antisense molecules and their delivery to specific cell sites, an improved understanding of how these molecules inhibit the production of proteins, as well as the optimization of the chemical stability of antisense molecules and the thermodynamic stability of the duplexes they form with the mRNA targets. The last two issues in particular have prompted chemists to launch an extensive search for oligonucleotide analogs with improved binding properties for hybridization with RNA and higher resistance toward nuclease degradation. During the last years this research has resulted in a flurry of new chemical analogs of DNA and RNA with modifications in the sugar–phosphate backbone as well as in the nucleobase sites. However, to date little effort has been directed toward uncovering the exact origins of the gain or loss in stability when nucleic acid analogs bind to RNA. Although large amounts of thermodynamic data have been collected, the structural perturbations induced by the modifications in hybrid duplexes are only poorly understood. For many modified oligonucleotides the compatibility of protection, coupling, and deprotection chemistry with standard DNA and RNA synthesis protocols makes it now possible to generate modified nucleic acid fragments or mixed oligonucleotides containing modifications at selected sites in quantities suitable for three-dimensional structure investigations. Such studies should reveal the structural origins of the observed changes in affinity and specificity of binding for particular modifications and may guide the development of second-and third-generation antisense molecules. In addition, the availability of a previously unimaginable variety of modified building blocks and the investigation of their structures provides the basis for a deeper understanding of the native DNA and RNA structures. This contribution will summarize the results of X-ray crystallographic structure determinations of modified nucleic acid fragments conducted in our laboratory during the last three years and the insights gained from them.  相似文献   

9.
A generic sandwich-type biosensor with nanomolar detection limits   总被引:1,自引:0,他引:1  
A quantitative and highly sensitive, yet simple and rapid, biosensor system was developed for the detection of nucleic acid sequences that can also be adapted to the detection of antigens. A dipstick-type biosensor with liposome amplification, based on a sandwich assay format with optical detection, was combined with a simple coupling reaction that allows the transformation of the generic biosensor components to target specific ones by a mere incubation step. This biosensor platform system was developed and optimized, and its principle was proven using DNA oligonucleotides that provided a nucleic acid biosensor for the specific detection of RNA and DNA sequences. However, the coupling reaction principle chosen can also be used for the immobilization of antibodies or receptor molecules, and therefore for the development of immunosensors and receptor-based biosensors. The generic biosensor consists of liposomes entrapping sulforhodamine B that are coated with streptavidin on the outside, and polyethersulfone membranes with anti-fluorescein antibodies immobilized in the detection zone. In order to transform the generic biosensor into a specific DNA/RNA biosensor, two oligonucleotides that are able to hybridize to the target sequence were labeled with a biotin and a fluorescein molecule, respectively. By simultaneously incubating the liposomes, both oligonucleotides, and the target sequence in a hybridization buffer for 20–30 min at 42 °C, a sandwich complex was formed. The mixture was applied to the polyethersulfone membrane. The complex was captured in the detection zone and quantified using a handheld reflectometer. The system was tested using RNA sequences from B. anthracis, C. parvum and E. coli. Quantitation of concentrations between 10 fmol and 1000 fmol (10–1000 nM) was possible without altering any biosensor assay conditions. In addition, no changes to hybridization conditions were required when using authentic nucleic acid sequence-based amplified RNA sequences, and the generic biosensor compared favorably with those previously developed specifically for the RNA sequences. Therefore, the universal biosensor described is an excellent tool, for use in laboratories or at test sites, for rapidly investigating and quantifying any nucleic acid sequence of interest, as well as potentially any antigen of interest that can be bound by two antibodies simultaneously.  相似文献   

10.
We have demonstrated that a new type of circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON) with two closed nucleotide or alkyl loop structures (hexa‐ethylene glycol) inhibits influenza virus A replication in MDCK cells. The enzymatic synthesis of circular dumbbell RNA/DNA chimeric oligonucleotides was achieved by enzymatically ligating a self‐complementary phosphorylated oligonucleotide with T4‐RNA ligase. The CDRDON‐Al, with two closed alkyl loop structures, showed higher nuclease resistance, hybridization, and cellular uptake than the anti‐S‐ODN and the CDRDON, with two closed nucleotide hairpin‐loop structures. The circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON‐Al‐PB2‐as), containing an AUG initiation‐codon sequence as the target of PB2, showed highly inhibitory effects on influenza A virus RNA expression. The limited toxicity of unmodified phosphodiester oligonucleotides and the sequence‐specific binding to target mRNA indicate that circular dumbbell RNA/DNA chimeric phosphodiester oligonucleotides can be used with intact cells, and may prevent viral replication in culture.  相似文献   

11.
Triplex forming oligonucleotides are used as a tool for gene regulation and in DNA nanotechnology. By incorporating artificial nucleic acids, target affinity and biological stability superior to that of natural DNA may be obtained. This work demonstrates how a chimeric clamp consisting of acyclic (L)-threoninol nucleic acid (aTNA) and DNA can bind DNA and RNA by the formation of a highly stable triplex structure. The (L)-aTNA clamp is released from the target again by the addition of a releasing strand in a strand displacement type of reaction. It is shown that the clamp efficiently inhibits Bsu and T7 RNA polymerase activity and that polymerase activity is reactivated by displacing the clamp. The clamp was successfully applied to the regulation of luciferase expression by reversible binding to the mRNA. When targeting a sequence in the double stranded plasmid, 40 % downregulation of protein expression is achieved.  相似文献   

12.
Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease‐causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)exp, the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3‐dipolar cycloaddition reaction, a variant of click chemistry.  相似文献   

13.
Detecting small sequences of RNA in biological samples such as microRNA or viral RNA demands highly sensitive and specific methods. Here, a reconfigurable DNA origami template has been used where a chiral arrangement of gold nanorods on the structure can lead to the generation of strong circular dichroism (CD). Switching of the cross‐like DNA structure is achieved by the addition of nucleic acid sequences, which arrests the structure in one of the possible chiral states by specific molecular recognition. A specific sequence can thus be detected through the resulting changes in the plasmonic CD spectrum. We show the sensitive and selective detection of a target RNA sequence from the hepatitis C virus genome. The RNA binds to a complementary sequence that is part of the lock mechanism, which leads to the formation of a defined state of the plasmonic system with a distinct optical response. With this approach, we were able to detect this specific RNA sequence at concentrations as low as 100 pm .  相似文献   

14.
In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine-pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(α-thyminyl)-5,6-dihydrothymine (SP). In order to be able to investigate how nature's repair and tolerance mechanisms protect the integrity of genetic information, oligonucleotides containing sequence and site-specific UV lesions are essential. This tutorial review provides an overview of synthetic procedures by which these oligonucleotides can be generated, either through phosphoramidite chemistry or direct irradiation of DNA. Moreover, a brief summary on their usage in analysing repair and tolerance processes as well as their biological effects is provided.  相似文献   

15.
Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution‐phase click chemistry and solid‐phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click‐coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well‐established phosphoramidite method for the elongation. The series of chimeric 21‐mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small‐interfering RNA molecules.  相似文献   

16.
Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.  相似文献   

17.
Postsynthetic Stille cross-coupling for functionalization of oligonucleotides on solid support was applied on iodo modified RNA utilizing different protecting group strategies. As result, the otherwise very successful ACE [bis(acetoxyethyloxy)-methyl orthoester] chemistry was found to be limited since methylated side-products formed as was investigated via enzymatic degradation of RNA and various monomer model reactions. Enzymatic digestion of poly uridine sequences revealed presence of considerable amounts of N3-methylated uridine derivatives due to migration of methyl as phosphate protecting group used in ACE strategy. Monomer test reactions mimicking conditions on RNA clearly indicated an enhanced methylation effect correlated to the Stille coupling procedure.  相似文献   

18.
This paper describes a new method to replicate DNA and RNA microarrays. The technique, which facilitates positioning of DNA and RNA with submicron edge resolution by microcontact printing (muCP), is based on the modification of poly(dimethylsiloxane) (PDMS) stamps with dendrimers ("dendri-stamps"). The modification of PDMS stamps with generation 5 poly(propylene imine) dendrimers (G5-PPI) gives a high density of positive charge on the stamp surface that can attract negatively charged oligonucleotides in a "layer-by-layer" arrangement. DNA as well as RNA is transfer printed from the stamp to a target surface. Imine chemistry is applied to immobilize amino-modified DNA and RNA molecules to an aldehyde-terminated substrate. The labile imine bond is reduced to a stable secondary amine bond, forming a robust connection between the polynucleotide strand and the solid support. Microcontact printed oligonucleotides are distributed homogeneously within the patterned area and available for hybridization. By using a robotic spotting system, an array of hundreds of oligonucleotide spots is deposited on the surface of a flat, dendrimer-modified stamp that is subsequently used for repeated replication of the entire microarray by microcontact printing. The printed microarrays are characterized by homogeneous probe density and regular spot morphology.  相似文献   

19.
New chemically modified oligonucleotides at the site of the backbone are needed to improve the properties of oligonucleotides. A practical synthesis for a triazole‐linked nucleoside dimer based on a PNA‐like structure has been developed. This involves synthesizing two uracil‐based monomers that contain either an azide or an alkyne functionality, followed by copper‐catalyzed 1,3‐dipolar cycloaddition. This dimer was incorporated within an oligonucleotide via phosphoramidite chemistry and UV‐monitored thermal denaturation data illustrates slight destabilization relative to its target complementary sequence. This chemically modified dimer will allow for a future investigation of its properties within DNA and RNA‐based applications. J. Heterocyclic Chem., (2011).  相似文献   

20.
Over the past two decades, the spatiotemporal analysis of fluorescently labeled single RNA species has provided a broad insight into the synthesis, localization, degradation, and transport of RNA. To elucidate the dynamic behavior of functional RNAs in living cells, researchers throughout the world have proposed numerous fluorometric strategies for intracellular RNA imaging. Because, like most other biological molecules, RNA is intrinsically nonfluorescent, the development of methods for the labeling of RNAs of interest with fluorescent molecules is essential. Several artificial tag sequences have been attached onto the 3′ end of target RNAs and used as scaffolds for interacting with their fluorescent counterparts. In this Personal Account, we focus on the methods that have been developed to show how RNAs expressed in cells can be labeled and visualized by fluorescent proteins, small molecules, or nucleic acids. Each of these methods is designed to increase the sensitivity and specificity for imaging or to decrease the background fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号