首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
The advancement in early diagnosis and precise treatments options result in more predictable and powerful health care modalities. Aptamers are known as nucleic acid structures with three-dimensional conformation to selectively bind a target site. Physicochemical properties of aptamers, their conjugation with nanoparticles (NPs) in theranostics applications and their internalization have been found to be of interest in development of aptamer-based drug delivery systems. Therefore, we aimed to present an overview on the structure and generation of aptamers followed by advantages of aptamers-conjugated NPs and their theranostics applications in various diseases such as oncology, inflammatory diseases and viral diseases. Afterward, we discussed several reports on the internalization approaches of aptamers, efficiency of aptamers vs. their analogous, and implications of aptamers in clinical trials. Finally, we discussed the current challenges and future perspectives of actively targeted aptamers for clinical application. In conclusion, this review may hold a great promise for development of aptamer-based therapeutic platforms in clinical trials.  相似文献   

2.
堵玉林  梁静 《化学通报》2017,80(9):809-818
传统的抗肿瘤药物大多不具有选择性,在临床治疗中产生了严重的毒副作用。核酸适配体是一种小分子核酸,能够与靶标高亲和性、高特异性地结合。选择与癌症发生发展过程密切相关的生物标记物为靶标进行SELEX过程筛选出的核酸适配体自身可作为药物,也可与药物、siRNA、纳米粒等结合构成靶向给药体系,该体系能靶向作用于特定的肿瘤细胞,降低对正常细胞的毒性,用药量显著降低,药效提高。本文综述了近年来核酸适配体直接作为抗肿瘤药物、药物载体、siRNA载体以及作为纳米材料靶向剂构成多元复合靶向给药体系在肿瘤靶向治疗领域的研究进展。  相似文献   

3.
核酸适体被称为“化学抗体”, 具有与抗体类似或更加优异的特异性和亲和力, 可以精准地靶向靶蛋白, 与靶蛋白特异性结合. 此外, 核酸适体还具有获取简单、 合成简便、 易于进行化学修饰、 不易变性、 靶标范围广、 免疫原性低及细胞内化快等优点, 已被广泛应用于众多研究领域. 在癌症治疗领域, 核酸适体作为一种优异的靶向识别工具和药物递送载体, 可实现抗肿瘤药物的精准递送. 将核酸适体与药物分子偶联, 可通过核酸适体的靶向作用使药物分子随核酸适体共同进入靶细胞, 实现药物分子在靶细胞内的富集, 进而促进靶细胞的死亡. 近年来, 核酸适体偶联药物已成为癌症靶向治疗的前沿新兴领域, 希望通过该领域的深入研究为癌症靶向治疗领域提供新思路. 本文综合评述了以生物偶联技术构建的核酸适体偶联药物及其应用研究.  相似文献   

4.
郭圆斌  栗坤 《化学通报》2021,84(1):40-46
核酸适配体是通过指数富集配体系统进化技术(SELEX)从体外合成的寡核苷酸文库中筛选得到的短的寡核苷酸分子(ssDNA或RNA).核酸适配体能够通过折叠成特定的空间结构与靶标分子进行特异性结合,与抗体相比,适配体具有高亲和力、易修饰、低成本、易于合成和低免疫原性等优势,可以针对细胞、蛋白质、组织、生长因子进行癌症生物标...  相似文献   

5.
Aptamers, the nucleic acid analogs of antibodies, bind to their target molecules with remarkable specificity and sensitivity, making them promising diagnostic and therapeutic tools. The systematic evolution of ligands by exponential enrichment (SELEX) is time-consuming and expensive. However, regardless of those issues, it is the most used in vitro method for selecting aptamers. Therefore, recent studies have used computational approaches to reduce the time and cost associated with the synthesis and selection of aptamers. In an effort to present the potential of computational techniques in aptamer selection, a simple sequence-based method was used to design a 69-nucleotide long aptamer (mod_09) with a relatively stable structure (with a minimum free energy of −32.2 kcal/mol) and investigate its binding properties to the tyrosine kinase domain of the NT-3 growth factor receptor, for the first time, by employing computational modeling and docking tools.  相似文献   

6.
武振宁  薛书江  杨咏洁 《色谱》2018,36(10):947-951
核酸适配体是一类具有高度特异性和亲和力的单链寡核苷酸,被誉为"人工单抗",具有广阔的应用前景。它一般是通过指数富集的配基系统进化(SELEX)技术筛选获得。目前SELEX技术多局限于单一、纯化的可溶性蛋白质靶标。然而,蛋白质的纯化过程繁琐,耗时费力,而且很多靶标(如血清中的低丰度蛋白质或细胞的膜蛋白)很难纯化获得单一纯品。复合靶SELEX技术则可以避免靶标的纯化过程,能够保持靶标的天然构象,并且可以在未明确靶标的组成及结构特性的前提下,通过高通量的盲筛获得一系列特异性核酸适配体。该文主要介绍以未纯化的各种生物样本为复合靶的SELEX技术,以期为核酸适配体的筛选提供新思路。  相似文献   

7.
Aptamers are a promising class of affinity reagents because they are chemically synthesized, thus making them highly reproducible and distributable as sequence information rather than a physical entity. Although many high‐quality aptamers have been previously reported, it is difficult to routinely generate aptamers that possess both high affinity and specificity. One of the reasons is that conventional aptamer selection can only be performed either for affinity (positive selection) or for specificity (negative selection), but not both simultaneously. In this work, we harness the capacity of fluorescence activated cell sorting (FACS) for multicolor sorting to simultaneously screen for affinity and specificity at a throughput of 107 aptamers per hour. As a proof of principle, we generated DNA aptamers that exhibit picomolar to low nanomolar affinity in human serum for three diverse proteins, and show that these aptamers are capable of outperforming high‐quality monoclonal antibodies in a standard ELISA detection assay.  相似文献   

8.
The systematic evolution of ligands by exponential enrichment (SELEX) is a combinatorial oligonucleotide library-based in vitro selection approach in which DNA or RNA molecules are selected by their ability to bind their targets with high affinity and specificity, comparable to those of antibodies. Nucleic acids with high affinity for their targets have been selected against a wide variety of compounds, from small molecules, such as ATP, to membrane proteins and even whole organisms. Recently, the use of the SELEX technique was extended to isolate oligonucleotide ligands, also known as aptamers, for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. The number of aptamers generated as inhibitors of various target proteins has increased following automatization of the SELEX process. Their diagnostic and therapeutic efficacy can be enhanced by introducing chemical modifications into the oligonucleotides to provide resistance against enzymatic degradation in body fluids. Several aptamers are currently being tested in preclinical and clinical trials, and aptamers are in the process of becoming a new class of therapeutic agents. Recently, the anti-VEGF aptamer pegaptanib received FDA approval for treatment of human ocular vascular disease.  相似文献   

9.
New trends in affinity sensing: aptamers for ligand binding   总被引:1,自引:0,他引:1  
Aptamers are artificial nucleic acid ligands that can be generated against amino acids, drugs, proteins and other molecules. They are isolated from complex libraries of synthetic nucleic acids by an iterative process of adsorption, recovery and amplification. This review described the in vitro process to obtain aptamers (SELEX). It mentions the main characteristics of these molecules (i.e. affinity, specificity and stability). Moreover, it discusses advantages over antibodies. It reports potential applications of aptamers in analytical and diagnostic assays as biocomponents of biosensors (aptasensors) and allosteric ribozymes (aptazymes).  相似文献   

10.
Correct diagnosis and successful therapy are extremely important to enjoy a healthy life when suffering from a disease. To achieve these aims, various cutting-edge technologies have been designed and fabricated to diagnose and treat specific diseases. Among these technologies, aptamer–nanomaterial hybrids have received considerable attention from scientists and doctors because they have numerous advantages over other methods, such as good biocompatibility, low immunogenicity and controllable selectivity. In particular, aptamers, oligonucleic acids or peptides that bind to a specific target molecule, are regarded as outstanding biomolecules. In this review, several screening techniques for aptamers, also called systematic evolution of ligands by exponential enrichment (SELEX) methods, are introduced, and diagnostic and therapeutic aptamer applications are also presented. Furthermore, we describe diverse aptamer–nanomaterial conjugate designs and their applications for diagnosis and therapy.  相似文献   

11.
Aptamers are short length, single-stranded DNA or RNA affinity molecules which interact with any desired targets such as biomarkers, cells, biological molecules, drugs or chemicals with high sensitivity. They have been extensively employed for medical applications due to having more advantages than the antibodies such as easier preparation and modification, higher stability, lower batch-to-batch variability and cost. Moreover, aptamers can be easily integrated efficiently with sensors, biosensors, actuators and other devices. In this review article, different applications of aptamers for biological and chemical molecules detection within the scope of electrochemical methods were presented with recent studies. In addition, the present status and future perspectives for highly-effective aptasensors for specific and selective analyte detection were discussed. As in stated throughout the review, combining of extraordinary properties of aptamers with the electrochemical-based biosensors could have improved the sensitivity of the assay and reduced limit of detection.  相似文献   

12.
Since aptamer and its in vitro selection process called SELEX were independently described by Ellington and Gold in 1990, extensive research has been undertaken and numerous isolated aptamers for various targets have been applied. Aptamers can bind to a wide range of targets that include small organic molecules, inorganic compounds, haptens and even whole cells with high binding affinity and specificity. Aptamers for a wide range of targets have been selected currently. In addition, aptamers are thermo stable and can also be regenerated easily within a few minutes denaturation, which makes them easy to store or handle. These advantages make aptamers extremely suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the recent applications of aptamers for chemistry analysis, medicine and food security, along with the future trend will be discussed.  相似文献   

13.
适配体是体外采用SELEX技术筛选得到的一段寡核苷酸序列(DNA或RNA),能折叠成一定的空间结构结合靶物质,实现特异性吸附。其功能类似抗体,但具有抗体无法比拟的优势,如靶物质范围广、特异性强、亲和力高、可体外筛选、易于标记和修饰、稳定性好、没有毒性、易制备等。近年来,适配体已在分析检测、生物化学、食品安全、临床医疗等领域得到广泛应用。本文综述了适配体在金属离子、抗生素、农药残留、真菌毒素、蛋白质、微生物、细胞等成分靶向特异性快速检测方面的应用进展,并分析其存在的局限性和问题,展望其应用前景和发展趋势,以期为适配体应用的拓展和相关研究提供依据和支持。  相似文献   

14.
Within the last decades we witnessed the discovery of a number of mechanisms that enable the use of nucleic acids for therapeutic purposes. Small RNA and DNA molecules can be used to specifically suppress the expression of individual genes. Aptamers provide an alternative to monoclonal antibodies. A prerequisite for the pharmacological use of nucleic acids is an enhanced stability towards the body's degrading enzymes. This can be achieved for instance by employing non‐natural mirror‐image nucleic acids. The article describes the basic principles of stereochemistry underlying this approach and shows how these translate into the discovery of mirror‐image aptamers. Furthermore, it explains why the stereospecificity of Watson‐Crick base pairing has precluded mirror‐image nucleic acids from gene silencing methods and introduces a new approach that may help to overcome this.  相似文献   

15.
陈尔凝  赵新颖  屈锋 《色谱》2016,34(4):389-396
核酸适配体(aptamer)是通过指数富集配体系统进化技术(SELEX)筛选的能够以高亲和力和高特异性识别靶标分子或细胞的核糖核酸(RNA)和单链脱氧核糖核酸(ssDNA)。作为化学抗体,核酸适配体的制备和合成比抗体的成本更低。核酸适配体的靶标范围极其广泛,包括小分子、生物大分子、细菌和细胞等。针对细菌靶标筛选的适配体,目前主要应用于食品、医药和环境中的细菌检测。细菌的核酸适配体筛选可以通过离心法将菌体-适配体复合物与游离的适配体分离,并通过荧光成像、荧光光谱分析、流式细胞仪分选、DNA捕获元件、酶联适配体分析等方法表征适配体与靶标的相互作用。筛选出的适配体可结合生物、化学检测方法用于细菌检测。本文介绍了细菌适配体的筛选和表征方法以及基于适配体的检测方法的最新进展,分析了不同检测方法的利弊,并列出了2011~2015年筛选的细菌的核酸适配体。  相似文献   

16.
Detection of toxic small molecule contaminants with sensitivity, accuracy, and specificity is a challenging task. Traditionally used HPLC and mass spectrometry-based assays suffer from several drawbacks, including lengthy sample preparation, heavy instrumentation, and the need for expert technicians. Specific, measurable, accurate, robust, and time-saving (SMART) biosensors are needed to detect toxic substances. Aptamers provide unique opportunities for the rapid development of SMART biosensors to meet above challenges. Since aptamers are short nucleotide sequences; they are easy for chemical synthesis and functional modifications. Aptamers acquire specific molecule recognition potential through unique chemical bonding, including H-bonds, pi-pi, van der Waals, and hydrophobic interactions. For the discovery of aptamers, the SELEX process is used. Recently, efforts have been made to develop aptamers to detect toxic small molecules like antibiotics, pesticides, insecticides, pollutants, toxins, and allergens. Aptamer technology is a promising tool for analyzing these chemicals from diverse matrices. This review provides an update on advances in nucleic acid-based aptameric sensors for molecular diagnostics of toxic chemical from food, water, human fluids, and the environment.  相似文献   

17.
The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.  相似文献   

18.
The interaction between biomolecules with their target ligands plays a great role in regulating biological functions. Aptamers are short oligonucleotide sequences that can specifically recognize target biomolecules via structural complementarity and thus regulate related biological functions. In the past ten years, aptamers have made great progress in target biomolecule recognition, becoming a powerful tool to regulate biological functions. At present, there are many reviews on aptamers applied in biomolecular recognition, but few reviews pay attention to aptamer-based regulation of biological functions. Here, we summarize the approaches to enhancing aptamer affinity and the advancements of aptamers in regulating enzymatic activity, cellular immunity and cellular behaviors. Furthermore, this review discusses the challenges and future perspectives of aptamers in target recognition and biological functions regulation, aiming to provide some promising ideas for future regulation of biomolecular functions in a complex biological environment.  相似文献   

19.
Aptamers are single‐stranded nucleic acid molecules selected in vitro to bind to a variety of target molecules. Aptamers bound to proteins are emerging as a new class of molecules that rival commonly used antibodies in both therapeutic and diagnostic applications. With the increasing application of aptamers as molecular probes for protein recognition, it is important to understand the molecular mechanism of aptamer–protein interaction. Recently, we developed a method of using atomic force microscopy (AFM) to study the single‐molecule rupture force of aptamer/protein complexes. In this work, we investigate further the unbinding dynamics of aptamer/protein complexes and their dissociation‐energy landscape by AFM. The dependence of single‐molecule force on the AFM loading rate was plotted for three aptamer/protein complexes and their dissociation rate constants, and other parameters characterizing their dissociation pathways were obtained. Furthermore, the single‐molecule force spectra of three aptamer/protein complexes were compared to those of the corresponding antibody/protein complexes in the same loading‐rate range. The results revealed two activation barriers and one intermediate state in the unbinding process of aptamer/protein complexes, which is different from the energy landscape of antibody/protein complexes. The results provide new information for the study of aptamer–protein interaction at the molecular level.  相似文献   

20.
The application of aptamers in biomedicine is emerging as an essential technology in the field of cancer research. As small single-stranded DNA or RNA ligands with high specificity and low immunogenicity for their targets, aptamers provide many advantages in cancer therapeutics over protein-based molecules, such as antibodies. Vimentin is an intermediate filament protein that is overexpressed in endothelial cells of cancerous tissue. High expression levels of vimentin have been associated with increased capacity for migration and invasion of the tumor cells. We have selected and identified thioated aptamers with high specificity for vimentin using human ovarian cancer tissues. Tentative binding motifs were chosen for two vimentin aptamers based on predicted secondary structures. Each of these shorter, tentative binding motifs was synthesized, purified, and characterized via cell binding assays. Two vimentin binding motifs with high fidelity binding were selected and further characterized via cell and tissue binding assays, as well as flow cytometric analysis. The equilibrium binding constants of these small thioated aptamer constructs were also determined. Future applications for the vimentin binding aptamer motifs include conjugation of the aptamers to synthetic dyes for use in targeted imaging and therapy, and ultimately more detailed and precise monitoring of treatment response and tumor progression in ovarian pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号