首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A dominating set of a graph G = (N,E) is a subset S of nodes such that every node is either in S or adjacent to a node which is in S. The domatic number of G is the size of a maximum cardinality partition of N into dominating sets. The problems of finding a minimum cardinality dominating set and the domatic number are both NP-complete even for special classes of graphs. In the present paper we give an O(nE∣) time algorithm that finds a minimum cardinality dominating set when G is a circular arc graph (intersection graph of arcs on a circle). The domatic number problem is solved in O(n2 log n) time when G is a proper circular arc graph, and it is shown NP-complete for general circular arc graphs.  相似文献   

2.
In this paper, we propose an algorithm for generating minimal cutsets of undirected graphs. The algorithm is based on a blocking mechanism for generating every minimal cutset exactly once. The algorithm has an advantage of not requiring any preliminary steps to find minimal cutsets. The algorithm generates minimal cutsets atO(e · n) {wheree,n = number of (edges, vertices) in the graph} computational effort per cutset. Formal proofs of the algorithm are presented.  相似文献   

3.
For a given graph G=(V,E), the interval completion problem of G is to find an edge set F such that the supergraph H=(V,EF) of G is an interval graph and |F| is minimum. It has been shown that it is equivalent to the minimum sum cut problem, the profile minimization problem and a kind of graph searching problems. Furthermore, it has applications in computational biology, archaeology, and clone fingerprinting. In this paper, we show that it is NP-complete on split graphs and propose an efficient algorithm on primitive starlike graphs.  相似文献   

4.
Let G = (V,E) be an undirected graph. A subset F of E is a matching cutset of G if no two edges of F are incident with the same point, and G-F has more components than G. Chv?atal [2] proved that it is NP-complete to recognize graphs with a matching cutset even if the input is restricted to graphs with maximum degree 4. We prove the following: (a) Every connected graph with maximum degree ?3 and on more than 7 points has a matching cutset. (In particular, there are precisely two connected cubic graphs without a matching cutset). (b) Line graphs with a matching cutset can be recognized in O(|E|) time. (c) Graphs without a chordless circuit of length 5 or more that have a matching cutset can be recognized in O(|V||E|3) time.  相似文献   

5.
A path cover of a graph G=(V,E) is a set of pairwise vertex-disjoint paths such that the disjoint union of the vertices of these paths equals the vertex set V of G. The path cover problem is, given a graph, to find a path cover having the minimum number of paths. The path cover problem contains the Hamiltonian path problem as a special case since finding a path cover, consisting of a single path, corresponds directly to the Hamiltonian path problem. A graph is a distance-hereditary graph if each pair of vertices is equidistant in every connected induced subgraph containing them. The complexity of the path cover problem on distance-hereditary graphs has remained unknown. In this paper, we propose the first polynomial-time algorithm, which runs in O(|V|9) time, to solve the path cover problem on distance-hereditary graphs.  相似文献   

6.
Blockers and transversals   总被引:2,自引:0,他引:2  
Given an undirected graph G=(V,E) with matching number ν(G), we define d-blockers as subsets of edges B such that ν((V,E?B))≤ν(G)−d. We define d-transversals T as subsets of edges such that every maximum matching M has |MT|≥d. We explore connections between d-blockers and d-transversals. Special classes of graphs are examined which include complete graphs, regular bipartite graphs, chains and cycles and we construct minimum d-transversals and d-blockers in these special graphs. We also study the complexity status of finding minimum transversals and blockers in arbitrary graphs.  相似文献   

7.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

8.
Leaf powers are a graph class which has been introduced to model the problem of reconstructing phylogenetic trees. A graph G=(V,E) is called k-leaf power if it admits a k-leaf root, i.e., a tree T with leaves V such that uv is an edge in G if and only if the distance between u and v in T is at most k. Moroever, a graph is simply called leaf power if it is a k-leaf power for some kN. This paper characterizes leaf powers in terms of their relation to several other known graph classes. It also addresses the problem of deciding whether a given graph is a k-leaf power.We show that the class of leaf powers coincides with fixed tolerance NeST graphs, a well-known graph class with absolutely different motivations. After this, we provide the largest currently known proper subclass of leaf powers, i.e, the class of rooted directed path graphs.Subsequently, we study the leaf rank problem, the algorithmic challenge of determining the minimum k for which a given graph is a k-leaf power. Firstly, we give a lower bound on the leaf rank of a graph in terms of the complexity of its separators. Secondly, we use this measure to show that the leaf rank is unbounded on both the class of ptolemaic and the class of unit interval graphs. Finally, we provide efficient algorithms to compute 2|V|-leaf roots for given ptolemaic or (unit) interval graphs G=(V,E).  相似文献   

9.
We present an algorithm which finds a minimum vertex cover in a graph G(V, E) in time O(|V|+(ak)2k3), where for connected graphs G the parameter a is defined as the minimum number of edges that must be added to a tree to produce G, and k is the maximum a over all biconnected components of the graph. The algorithm combines two main approaches for coping with NP-completeness, and thereby achieves better running time than algorithms using only one of these approaches.  相似文献   

10.
11.
12.
Method of augmenting graphs is a general approach to solve the maximum independent set problem. As the problem is generally NP-hard, no polynomial time algorithms are available to implement the method. However, when restricted to particular classes of graphs, the approach may lead to efficient solutions. A famous example of this type is the maximum matching algorithm: it finds a maximum matching in a graph G, which is equivalent to finding a maximum independent set in the line graph of G. In the particular case of line graphs, the method reduces to finding augmenting (alternating) chains. Recent investigations of more general classes of graphs revealed many more types of augmenting graphs. In the present paper we study the problem of finding augmenting graphs different from chains. To simplify this problem, we introduce the notion of a redundant set. This allows us to reduce the problem to finding some basic augmenting graphs. As a result, we obtain a polynomial time solution to the maximum independent set problem in a class of graphs which extends several previously studied classes including the line graphs.  相似文献   

13.
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G=(V,E) and an integer k≥0, we ask whether there exists a subset VV with |V|≥k such that the induced subgraph G[V] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time -approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.  相似文献   

14.
A graph G=(V,E) is called a unit-distance graph in the plane if there is an embedding of V into the plane such that every pair of adjacent vertices are at unit distance apart. If an embedding of V satisfies the condition that two vertices are adjacent if and only if they are at unit distance apart, then G is called a strict unit-distance graph in the plane. A graph G is a (strict) co-unit-distance graph, if both G and its complement are (strict) unit-distance graphs in the plane. We show by an exhaustive enumeration that there are exactly 69 co-unit-distance graphs (65 are strict co-unit-distance graphs), 55 of which are connected (51 are connected strict co-unit-distance graphs), and seven are self-complementary.  相似文献   

15.
A vertex u in an undirected graph G = (V, E) is said to dominate all its adjacent vertices and itself. A subset D of V is a dominating set in G if every vertex in G is dominated by a vertex in D, and is a minimum dominating set in G if no other dominating set in G has fewer vertices than D. The domination number of G is the cardinality of a minimum dominating set in G.The problem of determining, for a given positive integer k and an undirected graph G, whether G has a dominating set D in G satisfying ¦D¦ ≤ k, is a well-known NP-complete problem. Cockayne have presented a linear time algorithm for finding a minimum dominating set in a tree. In this paper, we will present a linear time algorithm for finding a minimum dominating set in a series-parallel graph.  相似文献   

16.
The power domination problem is to find a minimum placement of phase measurement units (PMUs) for observing the whole electric power system, which is closely related to the classical domination problem in graphs. For a graph G=(V,E), the power domination number of G is the minimum cardinality of a set SV such that PMUs placed on every vertex of S results in all of V being observed. A vertex with a PMU observes itself and all its neighbors, and if an observed vertex with degree d>1 has only one unobserved neighbor, then the unobserved neighbor becomes observed. Although the power domination problem has been proved to be NP-complete even when restricted to some special classes of graphs, Dorfling and Henning in [M. Dorfling, M.A. Henning, A note on power domination in grid graphs, Discrete Applied Mathematics 154 (2006) 1023-1027] showed that it is easy to determine the power domination number of an n×m grid. Their proof provides an algorithm for giving a minimum placement of PMUs. In this paper, we consider the situation in which PMUs may only be placed within a restricted subset of V. Then, we present algorithms to solve this restricted type of power domination on grids under the conditions that consecutive rows or columns form a forbidden zone. Moreover, we also deal with the fault-tolerant measurement placement in the designed scheme and provide approximation algorithms when the number of faulty PMUs does not exceed 3.  相似文献   

17.
Shamir's algorithm for finding a minimum cutset in a (quasi)reducible graph runs in linear time and aborts if it discovers nonreducibility. A slight modification of the algorithm is more useful in contexts where valid input graphs may fail to be (quasi)reducible. The modified algorithm never aborts, always finds a cutset in linear time, and comes close to finding a minimum cutset when the input graph is close to being an acceptable input for the original algorithm. We study the size of the cutset as a function of the choices made in the search order. Examples suggest that the modified algorithm will do well in practice, especially if it is followed by another linear algorithm that scans a given cutset and removes any obviously unnecessary nodes. Detecting and breaking deadlocks in multiprogramming is one of the applications. In particular, the periodic centralized detect-and-break strategy can be implemented with linear time and space bounds and without any risk of starvation. Previous proposals for this strategy have exponential bounds.  相似文献   

18.
A graph G is bridged if every cycle C of length at least 4 has vertices x,y such that dG(x,y) < dC(x,y). A cycle C is isometric if dG(x,y) = dC(x,y) for all x,yV(C). We show that every graph contractible to a graph with girth g has an isometric cycle of length at least g. We use this to show that every minimal cutset S in a bridged graph G induces a connected subgraph. We introduce a “crowning” construction to enlarge bridged graphs. We use this to construct examples showing that for every connected simple graph H with girth at least 6 (including trees), there exists a bridged graph G such that G has a unique minimum cutset S and that G[S] = H. This provides counterexamples to Hahn's conjecture that dG(u,v) ≤ 2 when u and v lie in a minimum cutset in a bridged graph G. We also study the convexity of cutsets in bridged graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 161–170, 2003  相似文献   

19.
This paper proves that if a graph G has a stable cutset S such that no vertex of S lies on a hole, then G is k-colorable if and only if the GiUS are k-colorable, where Gi are the components of G ? S and a hole is a chordless odd-length (≥5) circuit. This result shows that critical hole-free perfect graphs cannot contain stable cutsets.  相似文献   

20.
A graph G = (V,E) is an integral sum graph if there exists a labeling S(G) ? Z such that V = S(G) and every two distinct vertices u, υV are adjacent if and only if u + υV. A connected graph G = (V,E) is called unicyclic if |V| = |E|. In this paper two infinite series are constructed of unicyclic graphs that are not integral sum graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号