首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intramolecular insertion of rhodium carbenoids into the alpha-C-H bonds of allylic ethers to give 3(2H)-furanones has been explored. Cyclopropanation is favored irrespective of the complex used for carbenoid generation or the substitution pattern of the allylic ether, unless a substituent is placed on the tether connecting the ether to the alpha-diazo ketone. Unusual acetal products resulting from an anomalous C-H insertion process are obtained in addition to the expected 3(2H)-furanones formed by conventional carbenoid C-H insertion. These acetals are the favored C-H insertion products in certain circumstances and particularly in cases where carbenoid generation is effected using an electron-deficient rhodium complex. Experiments with simple deuterium labeled substrates reveal that anomalous C-H insertion products arise by a mechanism that is distinct from that leading to the formation of conventional C-H insertion products. The formation of acetal products and the outcome of reactions performed using deuterium-labeled substrates suggest that a mechanism involving hydride migration to the rhodium center of the carbenoid is operative.  相似文献   

2.
Transition-metal-catalyzed C-H amination via nitrene insertion allows the direct transformation of a C-H into a C-N bond. Given the ubiquity of C-H bonds in organic compounds, such a process raises the problem of regio- and chemoselectivity, a challenging goal even more difficult to tackle as the complexity of the substrate increases. Whereas excellent regiocontrol can be achieved by the use of an appropriate tether securing intramolecular addition of the nitrene, the intermolecular C-H amination remains much less predictable. This study aims at addressing this issue by capitalizing on an efficient stereoselective nitrene transfer involving the combination of a chiral aminating agent 1 with a chiral rhodium catalyst 2. Allylic C-H amination of terpenes and enol ethers occurs with excellent yields as well as with high regio-, chemo-, and diastereoselectivity as a result of the combination of steric and electronic factors. Conjugation of allylic C-H bonds with the π-bond would explain the chemoselectivity observed for cyclic substrates. Alkanes used in stoichiometric amounts are also efficiently functionalized with a net preference for tertiary equatorial C-H bonds. The selectivity, in this case, can be rationalized by steric and hyperconjugative effects. This study, therefore, provides useful information to better predict the site of C-H amination of complex molecules.  相似文献   

3.
Metal nitrenes for use in C-H insertion reactions were obtained from N-tosyloxycarbamates in the presence of an inorganic base and a rhodium(II) dimer complex catalyst. The C-H amination reaction proceeds smoothly, and the potassium tosylate that forms as a byproduct is easily removed by filtration or an aqueous workup. This new methodology allows the amination of ethereal, benzylic, tertiary, secondary, and even primary C-H bonds. The intramolecular reaction provides an interesting route to various substituted oxazolidinones, whereas the intermolecular reaction gives trichloroethoxycarbonyl-protected amines that can be isolated with moderate to excellent yields and that cleave easily to produce the corresponding free amine. The development, scope, and limitations of the reactions are discussed herein. Isotopic effects and the electronic nature of the transition state are used to discuss the mechanism of the reaction.  相似文献   

4.
The mixed-valent paddlewheel complex tetrakis(2-oxypyridinato)diruthenium(II,III) chloride, [Ru(2)(hp)(4)Cl], catalyzes intramolecular allylic C-H amination with bis(homoallylic) sulfamate esters. These results stand in marked contrast to reactions performed with dirhodium catalysts, which favor aziridine products. The following discussion constitutes the first report of C-H amination using complexes such as [Ru(2)(hp)(4)Cl] and related diruthenium adducts. Computational and experimental studies implicate a mechanism for [Ru(2)(hp)(4)Cl]-promoted C-H amination involving hydrogen-atom abstraction/radical recombination and the intermediacy of a discrete, albeit short-lived, diradical species. The collective data offer a coherent model for understanding the preference of this catalyst to oxidize allylic (and benzylic) C-H bonds.  相似文献   

5.
Metalloporphyrins are a class of versatile catalysts with the capability to functionalize saturated C-H bonds via several well-defined atom/group transfer processes, including oxene, nitrene, and carbene C-H insertions. The corresponding hydroxylation, amination, and alkylation reactions provide direct approaches for the catalytic conversion of abundant hydrocarbons into value-added functional molecules through C-O, C-N, and C-C bond formations, respectively. This tutorial review describes metalloporphyrin-based catalytic systems for the functionalization of different types of sp(3) C-H bonds, both inter- and intramolecularly, including challenging primary C-H bonds. Additional features of metalloporphyrin-catalyzed C-H functionalization include unusual selectivities and high turnover numbers.  相似文献   

6.
Reaction between a sulfur(VI) compound and an iodine(III) oxidant in the presence of a catalytic quantity (<=3 mol %) of a rhodium(II) catalyst leads to the formation of a chiral metallanitrene of unprecedented reactivity. The latter allows intermolecular C-H amination to proceed in very high yields up to 92% and excellent diastereoselectivities up to 99% with C-H bond containing starting materials as the limiting component. The scope of this C-H functionalization includes benzylic and allylic substrates as well as alkanes. Secondary positions react preferentially, but insertion into activated primary C-H bonds or sterically accessible tertiary sites is also possible. Cooperative effects between the nitrene precursor and the chiral catalyst at the origin of these good results have also been applied to kinetic resolution of racemic sulfonimidamide. This methodology paves the way to the use of Csp3-H bonds as synthetic precursors for the introduction of a nitrogen functionality into selected positions.  相似文献   

7.
A highly selective C-H amination reaction under iron catalysis has been developed. This novel system, which employs an inexpensive, nontoxic [Fe(III)Pc] catalyst (typically used as an industrial ink additive), displays a strong preference for allylic C-H amination over aziridination and all other C-H bond types (i.e., allylic > benzylic > ethereal > 3° > 2° ? 1°). Moreover, in polyolefinic substrates, the site selectivity can be controlled by the electronic and steric character of the allylic C-H bond. Although this reaction is shown to proceed via a stepwise mechanism, the stereoretentive nature of C-H amination for 3° aliphatic C-H bonds suggests a very rapid radical rebound step.  相似文献   

8.
The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.  相似文献   

9.
Reddy RP  Lee GH  Davies HM 《Organic letters》2006,8(16):3437-3440
[reaction: see text] The dirhodium tetracarboxylate, Rh2(S-PTAD)4, derived from adamantylglycine, is a very effective chiral catalyst for carbenoid reactions. High asymmetric induction was obtained in Rh2(S-PTAD)4-catalyzed intramolecular C-H insertion (94% ee), intermolecular cyclopropanation (99% ee), and intermolecular C-H insertion (92% ee).  相似文献   

10.
We report that 1-aza-2-azoniaallene salts, generated from α-chloroazo compounds by treatment with halophilic Lewis acids, participate in intramolecular C-H amination reactions to provide pyrazoline products in good to excellent yield. This intramolecular amination occurs readily at both benzylic and tertiary aliphatic positions and proceeds at an enantioenriched chiral center without loss of enantiomeric excess. A competition reaction shows that insertion occurs more readily at an electron-rich benzylic position than an electron-deficient one. These observations are consistent with the 1-aza-2-azoniaallene intermediate reacting as a nitrenium-like ion by a concerted insertion mechanism.  相似文献   

11.
Reaction methodology for intermolecular C-H amination of benzylic and 3 degrees C-H bonds is described. This process uses the starting alkane as the limiting reagent, gives optically pure tetrasubstituted amines through stereospecific insertion into enantiomeric 3 degrees centers, displays high chemoselectivity for benzylic oxidation, and enables the facile preparation of isotopically enriched 15N-labeled compounds. Access to substituted amines, amino alcohols, and diamines is thereby made possible in a single transformation. Important information relevant to understanding the initial steps in the catalytic cycle, reaction chemoselectivity, the nature of the active oxidant, and pathways for catalyst inactivation has been gained through mechanistic analysis; these studies are also presented.  相似文献   

12.
Choi MK  Yu WY  Che CM 《Organic letters》2005,7(6):1081-1084
[reaction: see text] An operationally simple catalytic system based on [RuCl(2)(p-cymene)(2)] was developed for stereoselective cyclization of alpha-diazoacetamides by intramolecular carbenoid C-H insertion, and beta-lactams were produced in excellent yields and >99% cis-stereoselectivity. The Ru-catalyzed reactions can be performed without the need for slow addition of diazo compounds and inert atmosphere. With alpha-diazoanilides as substrate, the carbenoid insertion was directed selectively to aromatic C-H bond leading to gamma-lactam formation (>95% yield).  相似文献   

13.
[FeIII(F20‐tpp)Cl] (F20‐tpp=meso‐tetrakis(pentafluorophenyl)porphyrinato dianion) is an effective catalyst for imido/nitrene insertion reactions using sulfonyl and aryl azides as nitrogen source. Under thermal conditions, aziridination of aryl and alkyl alkenes (16 examples, 60–95 % yields), sulfimidation of sulfides (11 examples, 76–96 % yields), allylic amidation/amination of α‐methylstyrenes (15 examples, 68–83 % yields), and amination of saturated C? H bonds including that of cycloalkanes and adamantane (eight examples, 64–80 % yields) can be accomplished by using 2 mol % [FeIII(F20‐tpp)Cl] as catalyst. Under microwave irradiation conditions, the reaction time of aziridination (four examples), allylic amination (five examples), sulfimidation (two examples), and amination of saturated C? H bonds (three examples) can be reduced by up to 16‐fold (24–48 versus 1.5–6 h) without significantly affecting the product yield and substrate conversion.  相似文献   

14.
Metal‐catalyzed intramolecular C?H amination of alkyl azides constitutes an appealing approach to alicyclic amines; challenges remain in broadening substrate scope, enhancing regioselectivity, and applying the method to natural product synthesis. Herein we report an iron(III) porphyrin bearing axial N‐heterocyclic carbene ligands which catalyzes the intramolecular C(sp3)–H amination of a wide variety of alkyl azides under microwave‐assisted and thermal conditions, resulting in selective amination of tertiary, benzylic, allylic, secondary, and primary C?H bonds with up to 95 % yield. 14 out of 17 substrates were cyclized selectively at C4 to give pyrrolidines. The regioselectivity at C4 or C5 could be tuned by modifying the reactivity of the C5–H bond. Mechanistic studies revealed a concerted or a fast re‐bound mechanism for the amination reaction. The reaction has been applied to the syntheses of tropane, nicotine, cis‐octahydroindole, and leelamine derivatives.  相似文献   

15.
Radical-involved enantioselective oxidative C−H bond functionalization by a hydrogen-atom transfer (HAT) process has emerged as a promising method for accessing functionally diverse enantioenriched products, while asymmetric C(sp3)−H bond amination remains a formidable challenge. To address this problem, described herein is a dual CuI/chiral phosphoric acid (CPA) catalytic system for radical-involved enantioselective intramolecular C(sp3)−H amination of not only allylic positions but also benzylic positions with broad substrate scope. The use of 4-methoxy-NHPI (NHPI=N-hydroxyphthalimide) as a stable and chemoselective HAT mediator precursor is crucial for the fulfillment of this transformation. Preliminary mechanistic studies indicate that a crucial allylic or benzylic radical intermediate resulting from a HAT process is involved.  相似文献   

16.
Liu Y  Xiao W  Wong MK  Che CM 《Organic letters》2007,9(21):4107-4110
Three types of novel artemisinin derivatives have been synthesized through transition-metal-catalyzed intramolecular carbenoid and nitrenoid C-H bond insertion reactions. With rhodium complexes as catalysts, lactone 11 was synthesized via carbene insertion reaction at the C16 position in 90% yield; oxazolidinone 13 was synthesized via nitrene insertion reaction at the C10 position in 87% yield based on 77% conversion; and sulfamidate 14 was synthesized via nitrene insertion reaction at the C8 position in 87% yield.  相似文献   

17.
Iron is emerging as a key player in the search for efficient and environmentally benign methods for the functionalisation of C-H bonds. Non-heme iron enzymes catalyse a diverse array of oxidative chemistry in nature, and small-molecule complexes designed to mimic the non-heme iron active site have great potential as C-H activation catalysts. Herein we report the synthesis of a series of organic ligands that incorporate key features of the non-heme iron active site. Iron(ii) complexes of these ligands have been generated in situ and their ability to promote hydrocarbon oxidation has been investigated. Several of these systems promote the biomimetic dihydroxylation of cyclohexene at low levels, when hydrogen peroxide is used as the oxidant; allylic oxidation products are also observed. An investigation of ligand stability reveals formation of several breakdown products under the conditions of the oxidative turnover reactions. These products arise via oxidative decarboxylation, dehydration and deamination reactions. Taken together these results indicate that competing mechanisms are at play with these systems: biomimetic hydroxylation involving high-valent iron species, and allylic oxidation via Fenton chemistry and Haber-Weiss radical pathways.  相似文献   

18.
Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.  相似文献   

19.
Radical‐involved enantioselective oxidative C?H bond functionalization by a hydrogen‐atom transfer (HAT) process has emerged as a promising method for accessing functionally diverse enantioenriched products, while asymmetric C(sp3)?H bond amination remains a formidable challenge. To address this problem, described herein is a dual CuI/chiral phosphoric acid (CPA) catalytic system for radical‐involved enantioselective intramolecular C(sp3)?H amination of not only allylic positions but also benzylic positions with broad substrate scope. The use of 4‐methoxy‐NHPI (NHPI=N‐hydroxyphthalimide) as a stable and chemoselective HAT mediator precursor is crucial for the fulfillment of this transformation. Preliminary mechanistic studies indicate that a crucial allylic or benzylic radical intermediate resulting from a HAT process is involved.  相似文献   

20.
Analysis of the mechanism for Rh-mediated C-H amination has led to the development of a remarkably effective dinuclear Rh catalyst derived from 1,3-benzenedipropionic acid. This unique complex, Rh2(esp)2, is capable of promoting both intra- and intermolecular C-H oxidation reactions, and in all cases is superior to Rh2(O2CtBu)4. For the first time, C-H insertion is described with urea and sulfamide substrates to give 1,2- and 1,3-diamine derivatives, respectively. In addition, intermolecular amination of benzylic and secondary C-H bonds is shown to proceed efficiently even under conditions in which the starting alkane is employed as the limiting reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号