共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20-45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO(3)(-), NO(2)(-), HNO, ONOO(-), NO(2), OCl(-), and H(2)O(2). The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages. 相似文献
2.
A facile solution-phase synthesis route of highly uniform Cu2O nanospheres (Cu2O NPs) with the size of 57.7 ± 4.7 nm was developed, and then the nanoparticles were applied to live cell imaging under a common dark-field microscope. Starting from copper(II) salts, the synthesis of Cu2O NPs was made in the presence of cetyltrimethylammonium bromide (CTAB) by reducing the copper(II) with sodium borohydride (NaBH4) in aqueous medium and by aging process in the air. Monitoring of morphology evolution process of Cu2O NPs with scanning electron microscopy (SEM) and measuring of the UV-visible spectra showed that the synthesis of Cu2O NPs follows the reduction-oxidation coupled process of Cu2+ into Cu0 species at first and then the resulted Cu0 species into Cu2O NPs in the air. Light scattering (LS) features have been measured with a common spectrofluorometer and a common dark-field microscope, and it was found that the as-prepared Cu2O NPs display strong blue scattering light and can be applied for cell imaging. If incubated with human bone marrow neuroblastoma, transferrin-conjugated Cu2O NPs can get into the cells and show strong pure blue light in cytoplasm. Further investigations showed that the Cu2O NPs could be applied for probes for conformation of proteins. 相似文献
3.
4.
Jing Liang Guangxue Feng Ryan Tsz Kin Kwok Dan Ding Benzhong Tang Bin Liu 《中国科学:化学(英文版)》2016,59(1):53-61
Fluorescent light-up probes comprising a tetraphenylethene unit with aggregation-induced emission (AIE) characteristics and a water-soluble peptide have been designed and synthesized which provide cell membrane and nuclear permeability to live cells. This strategy has offered new opportunities for the development of probes with light-up ability and good signal-to-noise ratio. The selectivity or targeting specificity is determined by the peptide sequence, i.e. a nuclear localization signal that leads to nucleus imaging and a cell biomarker targeting peptide that offers specific light-up imaging of HT-29 cells. 相似文献
5.
Dana Al Kelabi Avishek Dey Lukman O. Alimi Hubert Piwoski Satoshi Habuchi Niveen M. Khashab 《Chemical science》2022,13(24):7341
Fluorescent microscopy is a powerful tool for studying the cellular dynamics of biological systems. Small-molecule organic fluorophores are the most commonly used for live cell imaging; however, they often suffer from low solubility, limited photostability and variable targetability. Herein, we demonstrate that a tautomeric organic cage, OC1, has high cell permeability, photostability and selectivity towards the mitochondria. We further performed a structure–activity study to investigate the role of the keto–enol tautomerization, which affords strong and consistent fluorescence in dilute solutions through supramolecular self-assembly. Significantly, OC1 can passively diffuse through the cell membrane directly targeting the mitochondria without going through the endosomes or the lysosomes. We envisage that designing highly stable and biocompatible self-assembled fluorophores that can passively diffuse through the cell membrane while selectively targeting specific organelles will push the boundaries of fluorescent microscopy to visualize intricate cellular processes at the single molecule level in live samples.In this article, we demonstrate the relatively unexplored potential of organic cages for use in targeted live cell imaging and highlight the importance of inter- and intramolecular interactions to stabilize and improve the performance of fluorophores.Organic fluorophores are of great interest in many research fields especially live cell imaging, which allows for noninvasive observation and monitoring of biological processes. Small molecule fluorophores can be functionalized and tuned with high precision to tag a diverse variety of biological targets; however, limited water solubility, cell-permeability, photostability and targetability have halted the biomedical translation of many promising fluorescent molecules.1 Ultimately, new generations of fluorescent tags were designed to include new functionalities that can improve their physical properties and cell penetration such as long aliphatic side chains and cell penetrating peptides.2–6 In addition, various strategies have been employed to improve the photostability of these compounds by the addition of electron withdrawing groups, conformational changes, encapsulation or incorporation within host macrocycles.7–13Major efforts in the organic fluorophores development have been directed towards designing stable probes targeting the mitochondria as it plays a central role in the generation of adenosine triphosphate (ATP), central metabolism, and apoptosis.14,15 Successful examples of mitochondria targeting fluorophores include triphenyl phosphonium cations, heterocyclic aromatic cations, macrocyclic amphiphiles, BODIPY derivatives and mitochondria targeted peptides that have limited solubility.16–21 Commercially available dyes for mitochondrial imaging such as Mito Tracker Red have a high photobleaching tendency and can form covalent bonds with the mitochondrial respiratory chain complex I resulting in increased cytotoxicity. Consequently, various organic, inorganic and hybrid platforms were developed ranging from small nanoparticles to self-assembled frameworks on the quest for improved mitochondrial imaging agents.22–27Porous organic cages have received major attention over the last decade as they are easily prepared, soluble in a range of solvents and are intrinsically porous.28–31 They have shown excellent applicability in molecular recognition, sensing and hydrocarbon separation but their biomedical imaging applications have never been investigated.32–35 Recently, self-assembled organic imine stacks showed impressive electroluminescence and live cell imaging.36 Moreover, an intracellular targeted macrocyclic nanohoop showed fast cell uptake and two-photon live cell fluorescence imaging.37 In this work, a tautomeric organic cage (OC1) that shows unprecedented photostability for live-cell imaging with high biocompatibility, cell permeability and mitochondrial targetability is reported (Fig. 1). We hypothesize that the keto–enol tautomerism is playing a major role in promoting the stability and sustaining the fluorescence of this platform. Such effect has been previously reported in other organic dyes such as oxyluciferin and HDFL.38,39Open in a separate windowFig. 1Tautomeric forms of OC1 and chemical structures of OC2 and OC3.Investigating other organic cages with less hydroxyl groups (OC2) or replacing the hydroxyl groups with methoxy substituents (OC3) resulted in the loss of cell stability, retention and targetability (Fig. 1). The presence of the –OH groups in OC1 not only enables keto–enol tautomerization but also promotes H-bonding interactions, which ultimately improves solubility and cell permeability. We envision that understanding the nature of the intra- and intermolecular interactions in organic probes can lead to a profound enhancement in the photobleaching efficacy in addition to cell permeability. OC1 can effectively image the mitochondria over 3 h with high selectivity and without any loss of efficacy (no photo bleaching), which is comparable to the commercially used MitoTracker RedFM.OC1, a [2 + 3] cage, was synthesized following a reported procedure and its structure was confirmed by 1H Nuclear Magnetic Resonance (NMR) and TOF-Mass analysis (Fig. S1–S4†).32 Dynamic light scattering (DLS) of OC1 revealed an average size of 30–50 nm in DMSO–H2O (2–5%) with a negative zeta potential of −5 mV (Fig. S5†). Single crystal X-ray analysis revealed that OC1 crystallizes in a triclinic crystal system with chiral P1 space group and the asymmetric unit consists of two molecules of [2 + 3] cages (Fig. S6†). Crystal structure analysis suggests that the imine cage crystallizes as the keto tautomeric form (Fig. 2a). This results in the formation of intramolecular N–H⋯O hydrogen bonding between the imine (N–H) hydrogen and the keto (C O) oxygen (dC–OH actual = 1.36 Å; dC O actual = 1.25–1.26 Å vs. dC O for OC1 = 1.260 Å and dC N actual = 1.25 Å vs. dC–NH for OC1 = 1.30–1.35 Å) (Fig. S6†). Three different windows of each cage are connected with three different cages in the same plane through weak C–H⋯O hydrogen bonding (d = 2.414 Å, and θ = 60°), which creates isolated pores at the center of the cage (Fig. 2b). Furthermore, the packing diagram suggests the formation of one-dimensional infinite extrinsic pores along the b-axis (Fig. 2c and S6†). OC1 is stable in aqueous solutions even at low pH as well as in cell media (Fig. S7–S10†).Open in a separate windowFig. 2(a) SCXRD and crystal image of OC1. (b) OC1 self-assembled through hydrogen bonding interactions. (c) Packing of OC1 along b-axis.To test our original proposal that organic cages can act as effective imaging agents, we first investigated the UV-visible spectrum of OC1 in DMSO, which exhibited two characteristic peaks at λmax = 286 and 330 nm that can be assigned to π–π* and n–π* transitions, respectively (Fig. S11†). Fluorescence emission spectra showed that OC1 exhibits two major peaks at around 411 and 497 nm upon excitation at 330–350 nm in DMSO, while excitation at 400 and 480 nm showed characteristic emission peaks at 503 and 538 nm, respectively (Fig. S12†). This behavior can be explained by the presence of two emissive forms due to the keto–enol tautomerization. The quantum yield (QY) of OC1 in DMSO (0.25) and chloroform (0.4) was also tested. Molar extinction coefficient of OC1 was estimated as 46 806 M−1 cm−1 in DMSO (Fig. S13–S14†). The quantum yield of OC1 in DMSO are about half that of in chloroform that is significantly matched with the reported intracellular targeted macrocyclic nanohoop structure.37 The fluorescent properties of OC1 were maintained at different pH values (4, 7 and 10) (Fig. S15†). We hypothesize that this mode of assembly, as supported by SCXRD, promotes stability and prevents aggregation-induced quenching that is very common in small molecule dye fluorophores. The keto–enol tautomerism is boosting intra- and intermolecular hydrogen bonding interactions that can be contributing to the emissive characteristics of this system. In fact, the presence of the phenolic OH groups have been reported to have critical effects on the structural and spectroscopic properties of organic cages.31,40We then proceeded to test OC1 for cell imaging by first testing the cytotoxicity of OC1 in MCF-7 cells (Fig. S16a†). The cells were treated with a solution of concentrations ranging from 3.9–500 μg ml−1 for 24 h. Cell death was measured using MTT assay demonstrating the excellent biocompatibility of OC1 with an IC50 of > 500 μg ml−1. MCF-7 cells were then either co-incubated with OC1 and LysoTracker Red or MitoTracker RedFM, the cells are then fixed with 4% formaldehyde (w/v) and imaged on a confocal laser-scanning microscope (CLSM). Interestingly, OC1 showed strong colocalization in the mitochondria with a Pearson''s correlation coefficient of 0.9751 (Fig. S16b and c†). Real time imaging of MCF-7 cells at different time intervals after co-internalization of OC1 and MitoTracker showed a clear signal overlap on a subcellular level (Fig. 3 and MOV1), which ultimately supports that OC1 can selectively target the mitochondria.Open in a separate windowFig. 3Live cell imaging of MCF-7 cells incubated with 250 μg ml−1 of OC1 for 3 h showing the uptake and colocalization of OC1 (abs/em ∼495/519 nm) with the commercial probe MitoTracker RedFM (abs/em ∼581/644 nm) in the mitochondria (scale bar at 50 μm).These encouraging results piqued our interest to investigate other organic cages in order to have a better understanding of the mechanistic factors in play. As the tautomeric activity is well reported to affect the photophysical properties of organic compounds, we compared OC1 to an organic cage with less phenolic OHs (OC2) and an organic cage with only methoxy substituents (OC3). OC2 and OC3 were synthesized and characterized according to reported procedures (Fig. S17–S25†).32,41 Absorbance, emission properties and stabilities of OC2 and OC3 in DMSO were also verified. OC2 showed one major characteristic emission peak at around 547 nm upon excitation at 350 and 440 nm. The quantum yield (QY) of OC2 in DMSO (6.7%) and chloroform (11.1%) was also tested (Fig. S13 and S14†). OC3 showed emission at 494 and 537 nm upon excitation at 320 nm and 480 nm upon excitation at 420 nm (Fig. S26†). The quantum yield (QY) and molar extinction coefficient of OC3 in DMSO is negligible. Cytotoxicity and biocompatibility studies of OC2 and OC3 showed a relatively higher cytotoxicity compared to OC1 (Fig. S27†). As to targetability and photostability, OC2 and OC3 showed less selectivity with colocalization in both mitochondria and lysosome where the fluorescent signal slowly disappeared, which implies the OC2 and OC3 are less stable than OC1 (Fig. S28†). Moreover, FACS data revealed that OC1 showed the highest uptake percentage in comparison to OC2, and OC3 with an uptake percentage of 86.4%, 78%, and 69%, respectively (Fig. S29†). Based on this data, we can conclude that indeed the hydroxyl groups, and their prompted keto–enol tautomerism, are playing a major role in stabilizing the overall structure through hydrogen bonding while simultaneously improving photostability and targetability. As a control, we tested the aldehyde starting material, 1,3,5-triformylphloroglucinol, to verify that OC1 is being uptaken as a whole and not as the aldehyde building block or a possible decomposition product. The experiment clearly demonstrates that 1,3,5-triformylphloroglucinol as a fluorophore had no selectivity towards the mitochondria and is initially distributed in the cytoplasm and finally localizes in the lysosomes for degradation (Fig. S30†).As for the uptake mechanism, we initially hypothesized that OC1 will be taken up by cells through endocytosis, which is the typical biological pathway of nanoparticles and nanoassemblies.42,43 Surprisingly, we discovered that OC1 can passively diffuse rather than being actively transported through the cell membrane. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes as it mainly relies on the second law of thermodynamics. We tested OC1 uptake in the presence of different endocytic inhibitors including chlorpromazine (CPZ), filipin (FIL), and amiloride to inhibit clathrin-mediated, caveolae mediated, and macropinocytotic endocytosis pathways, respectively.44 All cells were treated with the inhibitors for 30 min, followed by 3 h incubation with OC1. The cellular uptake data showed that there was no significant reduction in the uptake using the active transport inhibitors (Fig. 4a). Moreover, the passive transport was tested by incubating OC1 (125 μg ml−1) with MCF-7 for 3 h at different temperatures (4, 27, or 37 °C). The uptake was monitored by confocal microscopy (Fig. 4b) and quantified by FACS (Fig. 4c). Interestingly, no obvious reduction of uptake was observed in all the cases.Open in a separate windowFig. 4Cellular uptake mechanism of OC1. (a) Cell uptake of OC1 in the presence of endocytosis inhibitors to investigate endocytic uptake mechanism. (b) MCF-7 cell uptake CLSM of OC1 at 37 °C, 25 °C, and 4 °C, respectively (scale bar at 30 μm). (c) Quantification of cell fluorescence relative to 37 °C.After verifying the targetability and the uptake mechanism of OC1, we focused our attention on photostability. Since the commercially available mitochondrion tracker dyes normally have moderate photostability, it is critical to evaluate the photostability of OC1 in live cells. We first compared the photostability of OC1 with the commercially available MitoTracker RedFM. Since the excitation/emission wavelengths of OC1 (abs/em ∼495/519 nm) and MitoTracker RedFM (abs/em ∼581/644 nm) are distant from each other, we performed simultaneous scans for both dyes for 100 scans at 1.5 s per scan by incubating OC1 and MitoTracker RedFM with MCF-7 cells at 37 °C for 48 h. The results showed that at a laser power density of P ∼ 0.4132 W cm−2OC1 (ε = 46 806 M−1 cm−1) had higher retention and photostability than that of the MitoTracker RedFM where OC1 retained 54% of its initial fluorescence intensity while the fluorescence of MitoTracker RedFM dropped below 15% (Fig. 5a). Moreover, OC1 showed high photostability even at 72 h post-staining (Fig. 5b). Finally, it was noted that throughout the 72 h of incubation of OC1 with MCF-7, over three generations occurred in the cell culture and showed fluorescent labeling of the mitochondria suggesting that OC1 can be passed through to daughter cells upon cell division.Open in a separate windowFig. 5Intracellular retention and photostability of OC1. (a) Photostability of OC1 in MCF-7 cells co incubated with MitoTracker RedFM for 48 h. Plot of the sum intensity of each frame normalized to time 0 (frame 1) and plotted against time (seconds). Intensity data analysis was done using Python and plotted on Excel. (b) CLSM images (72 h post incubation) showing OC1 distribution while most of the MitoTracker RedFM signal was lost (Scale bar at 30 μm). 相似文献
6.
《中国化学快报》2020,31(6):1382-1386
Fluorescence imaging in the second near-infrared window(NIR-Ⅱ,1000-1700 nm) is a promising modality for real-time imaging of cancer and image-guided surgery with superior in vivo optical properties.So far,very few NIR-Ⅱ fluorophores have been reported for in vivo biomedical imaging of chemically-induced spontaneous breast carcinoma.Herein,a NIR-Ⅱ fluorescent probe CH1055-F3 with the nucleolin-targeted tumor-homing peptide F3 was demonstrated to prefe rentially accumulate in 4 T1 tumors.More importantly,CH1055-F3 exhibited specific NIR-Ⅱ signals with high spatial and temporal resolution,strong tumor uptake,and remarkable NIR-Ⅱ image-guided surgery in dimethylbenzanthracene(DMBA)-induced spontaneous breast tumor rats.This report presents the first tumor-homing peptide-based NIR-Ⅱ probe to diagnose transplantable and spontaneous breast tumors by the active targeting. 相似文献
7.
8.
Kim HM Kim BR An MJ Hong JH Lee KJ Cho BR 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(7):2075-2083
2-Acetyl-6-(dimethylamino)naphthalene-derived two-photon fluorescent Ca2+ probes (ACa1-ACa3) are reported. They can be excited by a 780 nm laser beam, show 23-50-fold enhancement in one- and two-photon excited fluorescence in response to Ca2+, emit fourfold stronger two-photon excited fluorescence than Oregon Green 488 BAPTA-1 upon complexation with Ca2+, and can selectively detect intracellular free Ca2+ ions in live cells and living tissues with minimum interference from other metal ions and membrane-bound probes. Moreover, these probes are capable of monitoring calcium waves at a depth of 120-170 microm in live tissues for 1100-4000 s using two-photon microscopy with no artifacts of photobleaching. 相似文献
9.
Yefeng Chen Chenghong Xue Jie Wang Minqiu Xu Yuyao Li Yiru Ding Heng Song Weipan Xu Hexin Xie 《中国化学快报》2022,33(3):1637-1642
Imaging dynamics of membrane proteins of live cells in a wash-free and real-time manner has been a challenging task. Herein, we report unprecedented applications of malachite green(MG), an organic dye widely used in pigment industry, as a switchable fluorophore to monitor membrane enzymes or noncatalytic proteins in live cells. Conformationally flexible MG is non-fluorescent in aqueous solution, yet covalent binding with endogenous proteins of cells significantly enhances its fluorescence at 670... 相似文献
10.
11.
This review discusses the development and recent advances of probes encapsulated by biologically localized embedding (PEBBLEs), and in particular the application of PEBBLEs as ion sensors. PEBBLEs allow for minimally intrusive sensing of ions in cellular environments due to their small size (20 to 600 nm in diameter) and protect the sensing elements (i.e. fluorescent dyes) by encapsulating them within an inert matrix. The selectivity and sensitivity of these nanosensors are comparable to those of macroscopic ion selective optodes, and electrodes, while the response time and absolute detection limit are significantly better. This paper discusses the principles guiding PEBBLE design including synthesis, characterization, diversification, the advantages and limitations of the sensors, cellular applications and future directions of PEBBLE research. 相似文献
12.
Sensitive live-cell fluorescence microscopy and single-molecule imaging are severely limited by rapid photobleaching of fluorescent probes. Herein, we show how to circumvent this problem using a novel, generic labeling strategy. Small nickel-nitrilotriacetate fluorescent probes are reversibly bound to oligohistidine sequences of exposed proteins on cell surfaces, permitting selective observation of the proteins by fluorescence microscopy. Photobleached probes are removed by washing and replaced by new fluorophores, thus enabling repetitive acquisition of single-molecule trajectories on the same cell and allowing variation of experimental conditions between acquisitions. This method offers free choice of fluorophores while being minimally perturbing. The strength of the method is demonstrated by labeling engineered polyhistidine sequences of the serotonin-gated 5-HT(3) receptor on the surface of live mammalian cells. Single-molecule microscopy reveals pronounced heterogeneous mobility patterns of the 5-HT(3) receptor. After activating the receptor with serotonin, the number of immobile receptors increases substantially, which might be important for receptor regulation at synapses. 相似文献
13.
14.
Wenchao Wang Ying Zhang Hong Zhao Xinlei Zhuang Haoting Wang Kaifeng He Wanting Xu Yu Kang Shuqing Chen Su Zeng Linghui Qian 《Chemical science》2021,12(40):13477
Cell-surface proteins, working as key agents in various diseases, are the targets for around 66% of approved human drugs. A general strategy to selectively detect these proteins in a real-time manner is expected to facilitate the development of new drugs and medical diagnoses. Although brilliant successes were attained using small-molecule probes, they could cover a narrow range of targets due to the lack of suitable ligands and some of them suffer from selectivity issues. We report herein an antibody-based fluorogenic probe prepared via a two-step chemical modification under physiological conditions, to fulfill the selective recognition and wash-free imaging of membrane proteins, establishing a modular strategy with broad implications for biochemical research and for therapeutics.A modular strategy to convert commercially available antibodies into fluorogenic probes has been developed, enabling selective recognition and wash-free imaging of endogenous membrane proteins. 相似文献
15.
Lee HL Lord SJ Iwanaga S Zhan K Xie H Williams JC Wang H Bowman GR Goley ED Shapiro L Twieg RJ Rao J Moerner WE 《Journal of the American Chemical Society》2010,132(43):15099-15101
Superresolution imaging techniques based on sequential imaging of sparse subsets of single molecules require fluorophores whose emission can be photoactivated or photoswitched. Because typical organic fluorophores can emit significantly more photons than average fluorescent proteins, organic fluorophores have a potential advantage in super-resolution imaging schemes, but targeting to specific cellular proteins must be provided. We report the design and application of HaloTag-based target-specific azido DCDHFs, a class of photoactivatable push-pull fluorogens which produce bright fluorescent labels suitable for single-molecule superresolution imaging in live bacterial and fixed mammalian cells. 相似文献
16.
17.
Based on the mechanism of H2O2-mediated hydrolysis of sulfonates, two fluorescein disulfonates compounds (FS-1 and FS-2) were designed and synthesized as
the highly selective and sensitive fluorescent probes for imaging H2O2 in living cells. The probes were detected with elemental analysis, IR, 1H NMR and 13C NMR. Upon reaction with H2O2, the probes exhibit strong fluorescence responses and high selectivity for H2O2 over other reactive oxygen species and some biological compounds. Furthermore, the sulfonate-based probes, as novel fluorescent
reagents, are cell-permeable and can detect micromolar changes in H2O2 concentrations in living cells by using confocal microscopy.
Supported by the National Basic Research Program of China (Grant No. 2007CB936000), the National Natural Science Funds for
Distinguished Young Scholar (Grant No. 20725518), Major Program of the National Natural Science Foundation of China (Grant
No. 90713019), the National Natural Science Foundation of China (Grant No. 20875057), the Natural Science Foundation of Shandong
Province, China (Grant No. Y2007B02), and the Science and Technology Development Programs of Shandong Province, China (Grant
No. 2008GG30003012) 相似文献
18.
基于磺酸酯的荧光探针用于活细胞内过氧化氢的成像检测 总被引:1,自引:0,他引:1
基于过氧化氢(H2O2)特异性催化水解磺酸酯,设计合成了新型绿色荧光探针:荧光素二磺酸酯(FS—1)和二氯荧光素二磺酸酯(FS-2)两种螺环内酯型化合物,用于活细胞内过氧化氢的检测.探针结构由元素分析、IR、^1H NMR及^13C NMR表征.实验表明:探针FS-1和FS-2在模拟生物体系中检测过氧化氢具有良好的选择性和灵敏度,且线性范围较宽.细胞成像显示:探针FS-1和FS-2用于PMA刺激或外加不同浓度H2O2孵育的小鼠腹膜巨噬细胞均呈现明亮的绿色荧光,且能对细胞内H2O2微摩尔级浓度变化产生响应,证明两探针均具有良好的膜渗透性、高的选择性及良好的灵敏度.该方法的建立对研究生物体内H2O2的产生,H2O2导致的各种疾病机制及H2O2介导的信号转导途径具有重要的理论及实际意义. 相似文献
19.
Lord SJ Conley NR Lee HL Samuel R Liu N Twieg RJ Moerner WE 《Journal of the American Chemical Society》2008,130(29):9204-9205
We have reengineered a red-emitting dicyanomethylenedihydrofuran push-pull fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. Photoactivation of the dark fluorogen leads to conversion of an azide to an amine, which shifts the absorption to long wavelengths. After photoactivation, the fluorophore is bright and photostable enough to be imaged on the single-molecule level in living cells. This proof-of-principle demonstration provides a new class of bright photoactivatable fluorophores, as are needed for super-resolution imaging schemes that require active control of single molecule emission. 相似文献
20.
Liu DS Tangpeerachaikul A Selvaraj R Taylor MT Fox JM Ting AY 《Journal of the American Chemical Society》2012,134(2):792-795
The inverse-electron-demand Diels-Alder cycloaddition between trans-cyclooctenes and tetrazines is biocompatible and exceptionally fast. We utilized this chemistry for site-specific fluorescence labeling of proteins on the cell surface and inside living mammalian cells by a two-step protocol. Escherichia coli lipoic acid ligase site-specifically ligates a trans-cyclooctene derivative onto a protein of interest in the first step, followed by chemoselective derivatization with a tetrazine-fluorophore conjugate in the second step. On the cell surface, this labeling was fluorogenic and highly sensitive. Inside the cell, we achieved specific labeling of cytoskeletal proteins with green and red fluorophores. By incorporating the Diels-Alder cycloaddition, we have broadened the panel of fluorophores that can be targeted by lipoic acid ligase. 相似文献