首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apocynin, androsin, together with picroside I, II and III from crude extracts of Picrorhiza scrophulariiflora were isolated by means of high‐speed counter‐current chromatography (CCC) combining elution‐extrusion (EE) and cycling‐elution (CE) approach. The EECCC took full advantages of the liquid nature of the stationary phase for a complete sample recovery and extended the solute hydrophobicity window, while CECCC showed its unique advantage in achieving effective separation of special compounds through preventing stationary phase loss. In the present work, the biphasic liquid system composed of n‐hexane/ethyl acetate/methanol/water (1:2:1:2, v/v/v/v) was used for separation of apocynin and androsin, ethyl acetate/n‐butanol/water/formic acid (4:1:5:0.005, v/v/v/v) for picroside I, II and III. However, due to the extremely similar K values (K1/K2≈1.2), picroside I and III were always eluted together by several biphasic solvent systems. In this case, the CECCC exhibited great superiority and baseline separated in the sixth cycle using ethyl acetate/water (1:1, v/v) as biphasic liquid system. Each fraction was analyzed by UPLC‐UV and ESI‐MS analysis, and identified by comparing with the data of reference substances. Compared with classical elution, the combination of EE and CE approach exhibits strong separation efficiency and great potential to be a high‐throughput separation technique in the case of complex samples.  相似文献   

2.
Enrichment of the anti‐tumor compound barbigerone along with a rotenoid derivative from Millettia pachycarpa Benth. was performed by a two‐step high‐speed counter‐current chromatography (HSCCC) separation process. In the first step, 155.8 mg of target fraction (Fra6) was obtained from 400 mg ethyl acetate extract of M. pachycarpa Benth. with an increase in barbigerone from 5.1 to 13% via HSCCC using a solvent system of n‐hexane–ethyl acetate–methanol–water (5:4:5:3, v/v) under normal phase head to tail elution. HSCCC was repeated to eliminate the major contaminant in this initial fraction 6. After a separation time of 65 min, 22.1 mg barbigerone of 87.7% purity was obtained from Fra6 with the ternary solvent system of n‐hexane–methanol–water (2:2:1, v/v) under normal phase elution. Finally, preparative HPLC was employed for the further isolation of barbigerone and the rotenoid derivative. The structures were confirmed by ESI‐MS, 1H NMR and 13C NMR.  相似文献   

3.
Wei Y  Hu J  Li H  Liu J 《Journal of separation science》2011,34(23):3426-3432
Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR.  相似文献   

4.
The medicinal plant Atractylodes macrocephala (Baizhu in Chinese) has been widely used in traditional Chinese medicine for energy and stomach complaints, treatment of dyspepsia and anorexia, anti-inflammation, anticancer and for increasing assimilation. A high-speed counter-current chromatography (HSCCC) method was developed for the preparative separation and purification of two main bioactive components, namely, atractylon and atractylenolide III from A. macrocephala by using light petroleum (60-90 degrees C)-ethyl acetate-ethanol-water (4:1:4:1 v/v) as the two-phase solvent system in dual-mode elution. Compared with the separation using the normal-mode elution, the dual-mode HSCCC can be achieved with shorter elution time. Atractylenolide III (32.1 mg) at 99.0% purity and 319.6 mg atractylon at 97.8% purity could be obtained from 1000 mg crude sample in a single run. The recoveries of atractylenolide III and atractylon were 95.4 and 92.6%, respectively.  相似文献   

5.
A three‐phase solvent system was efficiently applied for high‐speed counter‐current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three‐phase solvent system of n‐hexane/methyl tert‐butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high‐speed counter‐current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one‐step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of β‐sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively.  相似文献   

6.
Preparative high‐speed counter‐current chromatography (HSCCC) was successfully applied to the isolation and purification of three stilbene oligomers from Vitis chunganeniss using stepwise elution with a pair of two‐phase solvent systems composed of n‐hexane–ethyl acetate–methanol–water at (2:5:2:5, v/v) and (1:2:1:2, v/v). The preparative HSCCC separation was performed on 800 mg of crude sample yielding hopeaphenol (21.1 mg), amurensin G (37.2 mg) and vitisin A (95.6 mg) in a one‐step separation, with purities over 95% as determined by HPLC. The structures of these three compounds were identified by MS, 1H NMR and 13C NMR. In addition, their antioxidant activities were screened by DPPH assay, where vitisin A showed strong antioxidant activity. Further EPR experiments with spin‐trapping technique demonstrated that vitisin A is a potent and selective singlet oxygen quencher, which may be used in singlet oxygen‐mediated diseases as a pharmacological agent.  相似文献   

7.
The optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline from Corydalis yanhusuo W. T. Wang was investigated using orthogonal experimental design. pH‐zone‐refining counter‐current chromatography (CCC) with normal phase elution was successfully applied to preparative separation of alkaloids from the crude extract of Corydalis yanhusuo. The separation was performed with a biphasic solvent system composed of chloroform (CHCl3)–methanol (MeOH)–water (2:1:1, v/v), in which the lower organic phase containing 10 mM of triethylamine was used as the mobile phase, while the upper aqueous phase containing 10 mM of hydrochloric acid was used as the stationary phase. The separation mechanism of quaternary ammonium alkaloids using pH‐zone‐refining CCC was discussed in comparison with standard high‐speed CCC. In the present study, the separation of 1.200 g of crude sample yielded 129 mg of dehydrocorydaline and 12 mg of palmatine at a high purity of 94 and 92%, respectively. Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.  相似文献   

8.
He J  Zhang Y  Ito Y  Sun W 《Chromatographia》2011,73(3-4):361-365
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was applied to the separation and purification of three tauro-conjugated cholic acids of taurochenodeoxycholic acid (TCDCA), taurohyodeoxycholic acid (THDCA) and taurohyocholic acid (THCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The two-phase solvent system composed of chloroform-methanol-water-acetic acid (4:4:2:0.3, v/v/v/v) was selected for the one-step separation where the lower phase was used as the mobile phase in the head to tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 1.5 ml/min and 25°C respectively. From 100 mg of the crude extract, 10.2 mg of TCDCA, 11.8 mg of THDCA and 5.3 mg of THCA were obtained with the purity of 94.6%, 96.5% and 95.4%, respectively. in one step separation The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three tauro-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.  相似文献   

9.
A new humic acid stationary phase was prepared by immobilizing humic acid onto aminopropyl silica via an amide linkage formation and used, for the first time, for the separation and quantification of the tocopherol compounds in cold‐pressed oil samples under normal‐phase high‐performance liquid chromatography conditions. Parameters affecting the chromatographic separation such as mobile phase composition and flow rate were optimized. By evaluating the calculations of capacity factor, asymmetry factor, resolution, selectivity factor, and theoretical plate number, the best separation was obtained with isocratic elution of n‐hexane and isopropyl alcohol (99:1% v/v) at a flow rate of 1.0 mL/min. The effluent was monitored by a fluorescence detector set at excitation and emission wavelengths 295 and 330 nm, respectively. All compounds were separated in 20 min. The method was validated according to international guidelines and found to be linear in a wide concentration range, also the mean recovery of the compounds ranged from 97.9 to 99.2%, with a CV less than 2.7% in all cases. The results showed that the developed stationary phase is suitable for the separation and quantification of the tocopherol compounds in real oil samples.  相似文献   

10.
Baicalin was separated and purified for the first time from the traditional Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography. Crude baicalin was obtained by extraction with methanol-water (70:30, v/v) from S. baicalensis Georgi. The separation was performed in two steps with a two-phase solvent system composed of n-butanol-water (1:1, v/v), in which the lower phase was used as the mobile phase at a flow-rate of 1.0 ml min(-1) in the head-to-tail elution mode. A total of 37.0 mg of baicalin at 96.5% purity was yielded from 200 mg of the crude baicalin (containing 21.6% baicalin) with 86.0% recovery as determined by HPLC analysis.  相似文献   

11.
Niu L  Xie Z  Cai T  Wu P  Xue P  Chen X  Wu Z  Ito Y  Li F  Yang F 《Journal of separation science》2011,34(9):987-994
High‐speed counter‐current chromatography (HSCCC) was successfully applied for the preparative separation and purification of alkaloids from Corydalis bungeana Turcz. (Kudiding in Chinese) for the first time. After the measurement of partition coefficient of seven target alkaloids in the nine two‐phase solvent systems composed of CHCl3–MeOH–(0.1 M; 0.2 M; 0.3 M) HCl (4:1.5:2; 4:2:2; 4:3:2, v/v), CHCl3–MeOH–0.2 M HCl (4:2:2, v/v) and CHCl3–MeOH–0.3 M HCl (4:3:2, v/v) were finally selected for the HSCCC separation using the first upper phase as the stationary phase and the stepwise elution of the two lower mobile phases. Consequently, sanguinarine (10 mg), corynoline (25 mg), protopine (20 mg), corynoloxine (18 mg), and 12‐hydroxycorynoline (8 mg) were obtained from 200 mg of crude alkaloid extracts with purities of 94–99% as determined by HPLC. Their chemical structures were characterized on the basis of 1H‐NMR, 13C‐NMR, and LC‐ESI‐Q‐TOF‐MS/MS analyses.  相似文献   

12.
A preparative high‐speed counter‐current chromatography method for isolation and purification of bufadienolides from ChanSu was developed by using a stepwise elution with two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water at the ratios of 4:6:2:4 v/v, 4:6:2.5:4 v/v and 4:6:3.2:4 v/v. A total of 3.8 mg of gamabufotalin (1), 7.2 mg of arenobufagin (2), 3.4 mg of telocinobufagin (3), 5.3 mg of bufotalin (4), 8.5 mg of cinobufotalin (5) and 8 mg of bufalin (6) were obtained in one‐step separation from 80 mg of the crude extract with purity of 92.7, 96.7, 87.2, 97.3, 94.9 and 99.4%, respectively. Their chemical structures were identified on the basis of 1H‐NMR and 13C‐NMR technology.  相似文献   

13.
A novel method was developed for the simultaneous determination of kynurenine and tryptophan by high‐performance liquid chromatography with electrochemical detection at multi‐wall carbon nanotube (MWCNT)‐modified glassy carbon electrode. The separation and detection conditions were optimized. The typical HPLC experiments were conducted by using a reversed‐phase ODS column with a mobile phase consisting of stock acetate buffer (pH 5)–methanol (4:1, v/v) using an isocratic elution at the flow rate of 1.0 mL/min. The obtained LODs for kynurenine and tryptophane were 0.5 and 0.4 µmol/L, respectively. The analytical method for human plasma samples was validated and confirmed by LC‐UV and LC‐MS. The recoveries were in the range of 84.8–110%, and the precision was lower than 5.9%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
TLC and HPLC methods were developed for indirect chiral separation of penicillamine (3,3-dimethylcysteine) enantiomers after derivatization with Marfey's reagent (FDNP-Ala-NH(2)) and two of its structural variants, FDNP-Phe-NH(2) and FDNP-Val-NH(2). The binary mobile phase of phenol-water (3:1 v/v) and solvent combinations of acetonitrile and triethylamine phosphate buffer were found to give the best separation in normal and reversed-phase TLC, respectively. The diastereomers were also resolved on a reversed-phase C18 HPLC column with gradient elution of acetonitrile and 0.01 m trifluoroacetic acid. The results due to these three reagents were compared. The method was successful for checking the enantiomeric impurity of l-penicillamine in d-penicillamine and to check the enantiomeric purity of pharmaceutical formulations of d-penicillamine. The method was validated for linearity, repeatability, limit of detection and limit of quantification.  相似文献   

15.
High-speed counter-current chromatography (HSCCC) was successfully applied to the preparative separation and purification of squalene from microalgae. Crude squalene was obtained from the microalga Thraustochytrium ATCC 26185 by extraction with organic solvents. The crude squalene was further separated using a waterless two-phase solvent system composed of n-hexane-methanol (2:1, v/v). The upper phase as the mobile phase was pumped into the column at a flow-rate of 2.0 ml min(-1) in the tail-to-head elution mode. The fractions purified and collected were analyzed by high-performance liquid chromatography. The method yielded 0.2 mg squalene at 96% purity from 150 mg of the crude squalene (0.14% squalene) with 95% recovery. The separation of squalene by HSCCC was completed in 90 min.  相似文献   

16.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

17.
Qiao Q  Du Q 《Journal of chromatography. A》2011,1218(36):6187-6190
The flash high speed counter-current chromatographic (FHSCCC) separation of gingerols and 6-shogaol was performed on a HSCCC instrument equipped with a 1200-ml column (5 mm tubing i.d.) at a flow rate of 25 ml/min. The performance met the FHSCCC feature that the flow rate of mobile phase (ml) is equal to or greater than the square of the diameter of the column tubing (mm). The separation employed the upper phase of stationary phase of the n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) as the stationary phase. A stepwise elution was performed by eluting with the lower phase of n-hexane-ethyl acetate-methanol-water (3:2:2:3, v/v) for first 90 min and the lower phase of the n-hexane-ethyl acetate-methanol-water (3:2:6:5, v/v) for the second 90 min. In each separation 5 g of the ethyl acetate extract of rhizomes of ginger was loaded, yielding 1.96 g of 6-gingerol (98.3%), 0.33 g of 8-gingerol (97.8%), 0.64 g of 6-shogaol (98.8%) and 0.57 g of 10-gingerol (98.2%). The separation can be expected to scale up to industrial separation.  相似文献   

18.
A sensitive, reliable and reproducible HPLC method with electrochemical detection (HPLC-ECD) has been developed for the separation and quantification of levodopa methyl ester (LDME) and its impurities such as levodopa (l-DOPA), 3-methoxytyrosine (MTS) and l-tyrosine (TS) in bulk drug and pharmaceutical dosage form. The separation was performed on an LC18 column by isocratic elution with methanol-acetonitrile-50 mm potassium dihydrogen phosphate (8:2:90, v/v/v) containing 5 mm sodium 1-hexanesulfonate, 5 mm EDTA and 5 mm sodium chloride, adjusted with phosphoric acid to a pH of 3.2 as mobile phase. The correlation coefficients of linear regression for LDME, L-DOPA, MTS and TS were more than 0.999. The detection limits for L-DOPA, MTS and TS were 3.15, 2.04 and 2.88 ng/mL, respectively. The precision was checked in terms of F-test variance ratio using potentiometric titration as reference. The separation of dopa methyl ester enantiomers by chiral chromatography is also described. This method is capable of separating the two enantiomers with a selection of 1.4 and a resolution of 8.4. Both methods were found to be stable and useful in the quality control of the bulk material and formulations.  相似文献   

19.
A preparative high-speed counter-current chromatography (HSCCC) method for isolation and purification of coumarins from Peucedanum praeruptorum Dunn (Baihuaqianhu in Chinese) was successfully established by using light petroleum-ethyl acetate-methanol-water as the two-phase solvent system in gradient elution mode. The upper phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) was used as the stationary phase of HSCCC. The mobile phase used in HSCCC was the lower phase of light petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v) and light petroleum-ethyl acetate-methanol-water (5:5:6.5:3.5, v/v) that was changed in gradient. Four kinds of coumarins and another unknown compound were obtained and yielded 5.3 mg of qianhucoumarin D, 7.7 mg of Pd-Ib, 35.8 mg of (+)-praeruptorin A, 31.9 mg of (+)-praeruptorin B and 6.4 mg of unknown compound with the purity of 98.6%, 92.8%, 99.5%, 99.4% and 99.8% in one-step separation, respectively. The structures of the coumarins were identified by 1H NMR and 13C NMR.  相似文献   

20.
High-speed counter-current chromatography (HSCCC) was applied to the separation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc. The crude extracts from P. cuspidatum Sieb. et Zucc were treated with light petroleum-ethyl acetate-methanol-water (2:5:4:6, v/v). Sample 1 was obtained from the lower phase and sample 2 from the upper phase. The sample 1 was separated with light petroleum-ethyl acetate-water (1:5:5, v/v) and yielded 19.3mg of piceid, 17.6 mg of anthraglycoside B from 200mg of sample 1. The sample 2 was separated with light petroleum-ethyl acetate-methanol-water (3:5:4:6, v/v) and light petroleum-ethyl acetate-methanol-water (3:5:7:3, v/v) in a gradient elution and yielded 18.5mg of resveratrol, 35.3mg of emodin and 8.2mg of physcion from 220 mg of sample 2. The purity of each compound is over 95% as determined by HPLC. The chemical structures of these components were identified by (1)H NMR and (13)C NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号