首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

2.
The compounds (NH4)3[Ta(O2)4], K3[Ta(O2)4], Rb3[Ta(O2)4] and Cs3[Ta(O2)4] have been prepared and investigated by X-ray powder methods as well as Raman- and IR-spectroscopy. In the case of Rb3[Ta(O2)4] the structure has been solved from single crystal data. It is shown that all these compounds are isotypic and crystallize in the K3[Cr(O2)4] type (SG , No. 121). The infrared- and Raman spectra (recorded on powdered samples) are discussed with respect to the internal vibrations of the peroxo-group and the dodecahedral [Ta(O2)4]3− ion. Symmetry coordinates for the [Ta(O2)4]3− ion are given from which the vibrational modes of the O-O stretching vibrations of the O22− groups, the Ta-O stretching vibrations and the Ta-O bending vibrations are deduced.  相似文献   

3.
Several complexes of 2-(indazol-1-yl)-2-thiazoline (TnInA) with the divalent ions Co and Zn have been synthesized by the direct combination of the ligand and the metal chloride or nitrate hydrated salts in ethanol. These complexes have been characterized by a variety of physical–chemical techniques. Moreover, the structures of [CoCl2(TnInA)2] · C2H6O (1) and [(M)(TnInA)2(H2O)2](NO3)2 (M = Co, 3; Zn, 4) were determined by single-crystal X-ray diffraction. In all the complexes, the ligand TnInA bonds to the metal ion through the indazole and thiazoline nitrogen atoms. In complex 1 the environment around the cobalt ion may be described as a distorted octahedron with two TnInA ligands and two chlorine ligands. Compounds 3 and 4 are isostructural with a distorted octahedral geometry around the metal center, being linked to two water molecules and two TnInA ligands. However, in complex [ZnCl2(TnInA)] (2) the zinc atom is four-coordinated with a probable tetrahedral environment with two chloro ligands and one TnInA ligand bonded to the metal ion.  相似文献   

4.
The crystal structure of the double salt CoCl2·MgCl2·8H2O has been determined by the X-ray diffraction method. It crystallizes in the space group with a=6.0976(9), b=6.308(1), c=8.579(3) Å, α=81.99(2)°, β=88.40°, γ=84.61(1)°, Z=1, and R=0.027. The crystal consists of two kinds of well separated octahedra, [CoCl4(H2O)2]2− and [Mg(H2O)6]2+. The former is unique as aquachloro complexes of Co2+. In order to elucidate the reason prepared as such unique complexes in the double salts, formation energies for [MCl4(H2O)2]2− and [M(H2O)6]2+ (M=Co, Mg) have been calculated by using the density functional methods, and it has been revealed that the formation energies of the first coordination sphere for the metal ions and the Cl?H2O hydrogen bond networks around [CoCl4(H2O)2]2− play a decisive role in forming [CoCl4(H2O)2]2− with the regular octahedral geometry in the double salt.  相似文献   

5.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

6.
The copper(II) complex [Cu(p-Tdp)(H2O)2]·2H2O, where p-Tdp is the anion of p-toluidine-N,N-di-3-propionic acid (or N,N-di(2-carboxyethyl)-p-toluidine), has been synthesized and characterized by X-ray diffraction. Three crystallographically independent [Cu(p-Tdp)(H2O)2] molecules have a similar structure. The Cu atoms have a square pyramidal environment (4+1) with a small trigonal bipyramidal distortion. The ortho-H atom of the benzene ring blocks up the sixth coordination position of the Cu polyhedron. The basal plane is formed by the donor atoms of the tridentate ligand and by the water molecule (average bond length Cu---N 2.03, Cu---O 1.93, Cu---Ow 2.00 Å), the apex is occupied by another water molecule (Cu---Ow 2.27 Å). The Cu atoms are located 0.20–0.30 Å out of the mean planes of the four basal atoms towards the apical Ow atom. The IR and electronic absorption spectra of p-Tdp and the title compound have been described. UV–Vis reflectance spectra shows that the complex has the same square pyramidal geometry in the crystal state and in solution. The protonation constants of the ligand log K1=6.87(2), log K2=3.75(2), log K3=2.57(2) and stability constants log KCuH(p-Tdp)=2.13(5), log KCu(p-Tdp)=6.38(3) were determined by pH-titration at 25.0 °C and I=0.1 M KNO3.  相似文献   

7.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

8.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

9.
The combined use of di-2-pyridyl ketone [(py)2CO] and azides (N3) in nickel(II) and cobalt(II) pivalate chemistry has afforded complexes [Ni9(N3)2(O2CCMe3)8{(py)2CO2}4] (1) and [Co9(N3)2(O2CCMe3)8{(py)2CO2}4] (2), where (py)2CO22− is the gem-diolate(−2) form of (py)2CO. The complexes are isostructural and crystallize in the monoclinic P21/c space group. Their molecular structures consist of nine metal(II) ions, eight of which are arranged as two parallel squares flanking the ninth. DC magnetic susceptometry on powdered samples of 1 (1-p) reveal an overall antiferromagnetic behavior, leading to an S = 0 ground state. AC susceptometry reveals out-of-phase signals between 10 and 27 K, and ZFC and FC experiments show a divergence of the two curves below ∼27 K. Magnetization-decay and field-sweep experiments verify the relaxation behavior of the sample. Samples of the complex arising from carefully washed single crystals (1-cr) reveal a similar DC behavior, without however the appearance of cusps in the χΜΤ versus T curves, and no relaxation. The relaxation behavior has been assigned to NiO impurities. The results illustrate the extreme care that should be taken when examining the magnetic properties of apparently analytically pure materials obtained under heating. Complex 2 exhibits an overall antiferromagnetic behavior, without observation of any relaxation phenomena.  相似文献   

10.
The crystal of binuclear zinc complex Zn2(dhaash)2(py)4 was obtained in DMF and pyridine, where H2dhaash is 2,4-dihydroxy-5-acetylacetophenone-N-salicylhydrazone. It has been characterized by IR, UV, element analysis and X-ray single crystal diffraction. The crystallographic data were as follows: monoclinic system, space group P21/c, a=1.108 98(11) nm, b=1.640 84(16) nm, c=1.445 14(14) nm, β=108.617(2)°, Z=2, V=2.492 1(4) nm3, Dc=1.466 g·cm-3, Mr=1 099.74, μ=1.031 mm-1, F(000)=1 136 and the final R=0.044 8 and wR=0.105 8 for 4 143 observed reflections with I≥2σ(I), respectively. The X-ray crystal structure analysis revealed that, in the centrosymmetric binuclear complex molecule, two zinc(Ⅱ) centers are linked by two oxygen atoms (O(3) and O(3A)), respectively. Zn(1)…Zn(1A) distance is 0.314 81(6) nm, O(3)…O(3A) distance is 0.270 4(2) nm. Every zinc(Ⅱ) ion has an elongated octahedral coordination. For example, the two pyridine nitrogen atoms, one oxygen atom and one nitrogen atom from salicylhydrazone, one oxygen atom from 2,4-dihydroxy-5-acetylacetophenone in one dhaash2- ligand and one oxygen atom from 2,4-dihydroxy-5-acetylacetophenone in another dhaash2- ligand coordinated to zinc(Ⅱ) ion, respectively. Two zinc(Ⅱ) ions and all the 72 non-hydrogen atoms in the two dhaash2- ligands are in the same plane. CCDC: 261929.  相似文献   

11.
New hexa-coordinated Ru(II) complexes of the type [RuCl2(DMSO)2(diamine)] (diamine = o-phenylenediamine and ethylenediamine) have been prepared by reacting cis-[RuCl2(DMSO)4] with Schiff bases (H2sal-en, 1; H2nap-en, 2; H2sal-o-pdn, 3; H2nap-o-pdn, 4) in a 1:1 ratio. The ligands, which were expected to act as tetradentate (N2O2) chelates under the normal reaction conditions, were found to undergo hydrolytic cleavage to form the diamine and the corresponding aldehyde. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and1H NMR) data. Single-crystal X-ray analysis of the complex [RuCl2(DMSO)2(o-pndn)] revealed that the coordination environment around the ruthenium metal consists of a N2S2Cl2 octahedron.  相似文献   

12.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

13.
Dirubidium calcium tetraborate octahydrate, Rb2Ca[B4O5(OH)4]2·8H2O, was prepared by reaction of Rb-borate aqueous solution with CaCl2 and it's structure has been determined by single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system, space group P212121 with unit cell parameters, Z=4, The structure contains alternate layers of [B4O5(OH)4]2− polyanions separated by water molecules and Rb, Ca cations. The isolated [B4O5(OH)4]2− is constructed from two BO3(OH) tetrahedron groups and two BO2(OH) triangular groups joined at common oxygen atoms. The two BO3(OH) tetrahedron groups are further linked by means of an oxygen bridge across the ring. The Ca2+ ion displays seven coordination, while the two non-equivalent Rb+ ions display nine and seven coordination, respectively. Infrared and Raman (4000-400 cm−1) spectra of Rb2Ca[B4O5(OH)4]2·8H2O were recorded at room temperature and analyzed. Fundamental vibrational modes were identified and band assignments were made. The dehydration of this hydrated mixed borate occurs in one step and leads to an amorphous phase which undergoes a crystallization.  相似文献   

14.
The new U(VI) compound, [Ni(H2O)4]3[U(OH,H2O)(UO2)8O12(OH)3], was synthesized by mild hydrothermal reaction of uranyl and nickel nitrates. The crystal-structure was solved in the P-1 space group, a=8.627(2), b=10.566(2), c=12.091(4) Å and α=110.59(1), β=102.96(2), γ=105.50(1)°, R=0.0539 and wR=0.0464 from 3441 unique observed reflections and 151 parameters. The structure of the title compound is built from sheets of uranium polyhedra closely related to that in β-U3O8. Within the sheets [(UO2)(OH)O4] pentagonal bipyramids share equatorial edges to form chains, which are cross-linked by [(UO2)O4] and [UO4(H2O)(OH)] square bipyramids and through hydroxyl groups shared between [(UO2)(OH)O4] pentagonal bipyramids. The sheets are pillared by sharing the apical oxygen atoms of the [(UO2)(OH)O4] pentagonal bipyramids with the oxygen atoms of [NiO2(H2O)4] octahedral units. That builds a three-dimensional framework with water molecules pointing towards the channels. On heating [Ni(H2O)4]3[U(OH,H2O)(UO2)8O12(OH)3] decomposes into NiU3O10.  相似文献   

15.
The title complex with one η2 and two η1 deuterobenzene and one monodentate BF4 ligands was isolated as a by-product in the reaction between [(dppe)RhCl]2 and EtCl in C6D6, in the presence of AgBF4 and its X-ray crystal structure determined.  相似文献   

16.
A series of 12 cobalt (III) complexes of 2-hydroxy-aryloximes (H2oxime) with an α-diimine (enR), under the general formula [Co(oxime)(enR)2]Br · 2H2O were synthesized and characterized. The IR and H NMR spectra indicate the bidentate coordination mode of the ligands and the dianionic character of the oxime ligand in the complexes, while the electronic excitation spectra are indicative of an octahedral geometry around cobalt(III). The octahedral environment with CoN5O chromophore was confirmed by X-ray structure analysis of the solvated [bis(2,2′-bipyridine)-(2-hydroxy-benzaldoximato)cobalt(III)]bromide, [Co(saox)(bipy)2]Br · 0.166bipy · 0.15CH3OH · 1.75H2O. The phenolic oxygen as well as the oximic nitrogen plus two nitrogen atoms, each one from a different bipy molecule, build the equatorial plane. The oximic chelate ring can be described as an extentend delocalized π system. The crystal structure of one of the investigated oxime ligands, the 2-hydroxy-benzophenonoxime (H2bpox) was also determined by X-ray analysis, verifying the strong intra-and intermolecular hydrogen bonds.  相似文献   

17.
A novel cobalt (III) complex has been synthesized and its structure was determined. The structure consists of Co(tacn)23+ ions and ClO4, each cobalt (III) ion was six-coordinated with six nitrogen atoms of two tacns. Hydrogen bonds widely exist between the oxygen atoms of ClO4 and the nitrogen and carbon atoms of tacn, resulting in a unique three-dimensional network. The electronic spectra were measured and assigned in the strong-field approximation, giving the values of the parameter: Δ, B and C.  相似文献   

18.
Reaction of O,O’-diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with diethyl 4-aminobenzylphosphonate (EtO)2P(O)CH2C6H4-4-NH2 leads to the new N-thiophosphorylated thiourea (EtO)2P(O)CH2C6H4-4-[NHC(S)NHP(S)(OiPr)2] (HL). Reaction of the potassium salt of HL with Zn(II), Cd(II) and Co(II) in aqueous EtOH leads to complexes of formula M(L-S,S’)2 (ML2). Heteroligand copper(I) complex of HL and triphenylphosphine was prepared by the reaction of the potassium salt KL and Cu(PPh3)3I. Copper in complex Cu(PPh3)L is bound by one PPh3 and one SCNPS fragment of the chelating ligand. Compounds obtained were investigated by IR, UV–Vis, 1H and 31P{1H} NMR spectroscopy, and microanalysis. The structures of HL and Cu(PPh3)L were investigated by single crystal X-ray diffraction analysis.  相似文献   

19.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

20.
用过氧化物法合成了 [Co(3,3-tri)(amp)Cl][ZnCl4]的两个经式异构体,晶体结构解析表明两者互为差向异构体。其中反式异构体 (仲氢相对于 Cl)晶体属单斜晶系,空间群 C2/c, a=2.7663(7)nm, b=0.9505(1)nm, c=1.8288(4)nm,β =105.57(2)°, V=4.632(1)nm3, Dc=1.706g· cm-3, Z=8, F000=2432.00,μ (MoKα )=23.51cm-1, R=0.033, Rw=0.041;顺式异构体 (仲氢相对于 Cl)晶体属三斜晶系,空间群, a=1.0790(2)nm, b=1.1749(1)nm, c=0.8920(1)nm,α =90.73(1)°,β =109.573(9)°,γ =80.60(1)°, V=1.0500(2)nm3, Dc=1.71g· cm-3, Z=2, F000=548.00,μ (MoKα )=25.73cm-1, R=0.022, Rw=0.030。两异构体中 Co3+为六配位,其差异仅表现在 3,3-tri仲胺上氢的取向不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号