首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the turbulence of boundary layers in the energy-bearing interval of wave numbers several turbulence scales are sometimes used (for example, [1, 2]). In particular, the universality of the semiempirical model of turbulence [2] can be extended in this way. A turbulence model with one equation (energy balance of the turbulence) has been constructed and used [3–6] and it has been established that the number of problems that can be solved for a universal choice of the values of the empirical coefficients increases appreciably if not one but two turbulent scales are used. In the present paper, it is shown that the introduction of a second scale makes it possible to take into account the interaction of shear layers in flows with two shear layers (for example, a channel or jet), and also to take into account the influence of turbulence of an external flow on a boundary layer. The interaction of shear layers is taken into account in theories containing a transport equation for the turbulent frictional stress t (for example, [7]), in which the essence of the interaction reduces to diffusion of t from layer to layer. In the present paper, a predominant volume interaction effect is assumed. It takes the form of a difference between the interaction of large-scale vortices with a shear deformation motion in flows with one and two shear layers, and also in the presence of turbulence in an external flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 8, pp. 17–25, November–December, 1982.  相似文献   

2.
A constitutive law describing the Reynolds stresses in boundary layers undergoing laminar-to-turbulent transition, constructed in previous work by elastic-net regression on an experimental data base, is used to improve an algebraic intermittency model for cases with transition in a separated layer influenced by a high level of free-stream turbulence. The intermittency model is combined with a k-ω turbulence model and the basic version, developed in previous work, functions well for bypass transition in attached boundary layers and for transition in separated boundary layers under a low free-stream turbulence level. The basic model version is extended by an additional production term in the transport equation for turbulent kinetic energy. A sensor detects the front part of a separated layer and activates the production term. The term expresses the effect of Klebanoff streaks generated upstream of separation on the Kelvin-Helmholtz instability rolls in the separated part of the layer. The Klebanoff streaks cause faster breakdown by the combined effects of a large adverse pressure gradient and an elevated free-stream turbulence level. The extended model does not alter the results of the basic model version for bypass transition in an attached boundary layer and for transition in a separated boundary layer under a low free-stream turbulence level. The extended model significantly improves the predictions of the previous model version for transition in a separated boundary layer under a high free-stream turbulence level.  相似文献   

3.
基于标准k-ε湍流模型,首先利用湍流粘度方程和剪切应力在整个边界层内恒定的假设,推导出一类耗散率表达式,并根据常用的湍动能入口剖面方程以及平均风速剖面方程,计算获得相应的耗散率方程;然后在输运方程中添加自定义源项,通过已经确定的平均速度方程、湍动能方程、耗散率方程计算得到相应输运方程的自定义源项表达式,并进行空风洞数值模拟,从而得到了一类满足平衡大气边界层的来流边界条件.通过将这种边界条件与由湍流平衡条件得到的边界条件进行比较,表明本方法获得的边界条件更适用.并且,本方法无需考虑修正壁面函数和修正湍流模型常数,因而计算更为简单,可为平衡大气边界层的研究提供一种新的思路.  相似文献   

4.
In [1, 2] turbulence of the external flow was taken into account by specifying the turbulent energy at the external boundary of the boundary layer on integrating the energy-balance equation for the turbulence. In [3] a special correction that allowed the turbulence of the external flow to be taken into account was introduced in determining the mixture path. In [4, 5] the turbulent energy calculated from the energy-balance equation of the turbulence was added to the energy induced by turbulence of the external flow, the energy distribution of the induced turbulence being specified using an empirically selected function. In [6, 7] a method of taking into account the effect of turbulence of the external flow on a layer of mixing and a jet was proposed. In the present work, this method is applied to the boundary layer at a plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 26–31, May–June, 1977.  相似文献   

5.
6.
Detailed mean flow and turbulence measurements have been made in the near-field of two plane mixing layers in air with a maximum velocity of 21 m/s. The experimental rig enabled mixing layers of velocity ratios 0 and 0.46 to be generated simultaneously. Cases with both tripped and untripped initial boundary layers were studied. In all cases, it was found that the two-stream layer developed to the self-preserving state in a distance much shorter than the single-stream layer, which followed accepted criteria for the development distance. The asymptotic levels of the turbulence quantities in the two-stream layer and the development of the single-stream layer showed agreement with existing data. The results suggest that the two-stream mixing layer should provide a better test case for the development of turbulence models and calculation methods than the single-stream mixing layer.  相似文献   

7.
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.  相似文献   

8.
9.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

10.
湍流边界层拟序结构的实验研究   总被引:12,自引:0,他引:12  
连祺祥 《力学进展》2006,36(3):373-388
20世纪60年代后, 先后从流动显示发现了快慢斑、猝发、上升流、下扫流和多种涡结构等湍流边界层的拟序结构. 它们对湍流边界层的摩阻、传热传质和湍动能的产生等特性有重要影响. 涡结构是上述拟序结构的核心, 它影响其它拟序结构的发展和演变. 发卡涡通常被认为是基本涡结构. 发卡涡等涡结构的再生, 是湍流边界层拟序结构能够自持续的必要的因素.壁面低速流上升产生猝发, 是湍流边界层湍能的主要来源; 条件采样是测量猝发频率和其它拟序结构出现频率的重要手段. 流动显示对湍流边界层拟序结构作了大量定性观察, 有许多减阻和增加传热率等应用性研究在此基础上发展起来. 80年代后, 出现了测量湍流边界层的瞬时流速矢量场的多热线法和PIV技术, 三维PIV技术可望将来为湍流边界层的实验研究带来重大进展. 本文评述了流动显示法、多热线法和PIV技术的优点和不足之处, 以及它们在对湍流边界层拟序结构的研究中的贡献.   相似文献   

11.
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.  相似文献   

12.
The dynamic and thermal characteristics of steady near-wall boundary layers in flow deceleration regions are studied on the basis of differential turbulencemodels. The method of transferring the boundary conditions from the wall into the flow is tested for flows with variable longitudinal pressure gradients. Using differential turbulence models in the transition and low-Reynolds-number regions near surfaces the effect of the parameters of highly turbulent free stream on the development of dynamic processes in the developed turbulent boundary layer in the flow deceleration region is studied. The calculated profiles of the velocity, the kinetic energy of turbulence, the friction and thermal conductivity coefficients, and the temperature factor are compared with the experimental data in the cases in which the boundary conditions are preassigned both on the wall and in the flow. The effect of an intermediate boundary condition on the results of the calculations is analyzed.  相似文献   

13.
A well-known optimization procedure is used to find the optimal disturbances in two different suction boundary layers within the spatial framework. The maximum algebraic growth in the asymptotic suction boundary layer is presented and compared to previous temporal results. Furthermore, the spatial approach allows a study of a developing boundary layer in which a region at the leading edge is left free from suction. This new flow, which emulates the base flow of a recent wind-tunnel experiment, is herein denoted a semi-suction boundary layer. It is found that the optimal disturbances for these two suction boundary layers consist of streamwise vortices that develop into streamwise streaks, as previously found for a number of shear flows. It is shown that the maximum energy growth in the semi-suction boundary layer is obtained over the upstream region where no suction is applied. The result indicates that the spanwise scale of the streaks is set in this region, which is in agreement with previous experimental findings.  相似文献   

14.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

15.
16.
17.
The receptivity of a laminar boundary layer to free stream disturbances has been experimentally investigated through the introduction of deterministic localized disturbances upstream of a flat plate mounted in a wind tunnel. Hot-wire measurements indicate that the spanwise gradient of the normal velocity component (and hence the streamwise vorticity) plays an essential role in the transfer of disturbance energy into the boundary layer. Inside the laminar boundary layer the disturbances were found to give rise to the formation of longitudinal structures of alternating high and low streamwise velocity. Similar streaky structures exist in laminar boundary layers exposed to free stream turbulence, in which the disturbance amplitude increases in linear proportion to the displacement thickness. In the present study the perturbation amplitude of the streaks was always decaying for the initial amplitudes used, in contrast to the growing fluctuations that are observed in the presence of free stream turbulence. This points out the importance of the continuous influence from the free stream turbulence along the boundary layer edge.  相似文献   

18.
Direct numerical simulation of turbulent incompressible plane-channel flow between a smooth wall and one covered with regular three-dimensional roughness elements is performed. While the impact of roughness on the mean-velocity profile of turbulent wall layers is well understood, at least qualitatively, the manner in which other features are affected, especially in the outer layer, has been more controversial. We compare results from the smooth- and rough-wall sides of the channel for three different roughness heights of h += 5.4, 10.8, and 21.6 for Re τ of 400, to isolate the effects of the roughness on turbulent statistics and the instantaneous turbulence structure at large and small scales. We focus on the interaction between the near-wall and outer-layer regions, in particular the extent to which the near-wall behavior influences the flow further away from the surface. Roughness tends to increase the intensity of the velocity and vorticity fluctuations in the inner layer. In the outer layer, although the roughness alters the velocity fluctuations, the vorticity fluctuations are relatively unaffected. The higher-order moments and the energy budgets demonstrate significant differences between the smooth-wall and rough-wall sides in the processes associated with the wall-normal fluxes of the Reynolds shear stresses and turbulence kinetic energy. The length scales and flow dynamics in the roughness sublayer, the spatially inhomogeneous layer within which the flow is directly influenced by the individual roughness elements, are also examined. Alternative mechanisms involved in producing and maintaining near-wall turbulence in rough-wall boundary layers are also considered. We find that the strength of the inner/outer-layer interactions are greatly affected by the size of the roughness elements.  相似文献   

19.
This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence.  相似文献   

20.
Modified variants of differential turbulence models which make it possible continuously to calculate both the entire flow region with laminar, transition and turbulent regimes and local low Reynolds number zones are proposed for investigating the flow and heat transfer in the boundary layers developing in compressible gas flow past curvilinear airfoils. The effect of the intensity and scale of free-stream turbulence and their variability along the outer boundary layer edge, as well as the combined action of the turbulence intensity and the streamwise pressure gradient in flow past blade profiles, on the heat transfer and near-wall turbulence characteristics is analyzed. The numerical results are compared with experimental and theoretical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号